纹理检索与分类的自适应直方图与不相似度量

F. S. Lim, W. Leow
{"title":"纹理检索与分类的自适应直方图与不相似度量","authors":"F. S. Lim, W. Leow","doi":"10.1109/ICIP.2002.1040078","DOIUrl":null,"url":null,"abstract":"Histogram-based dissimilarity measures are extensively used for content-based image retrieval. In an earlier paper, we proposed an efficient weighted correlation dissimilarity measure for adaptive-binning color histograms. Compared to existing fixed-binning histograms and dissimilarity measures, adaptive histograms together with weighted correlation produce the best overall performance in terms of high accuracy, small number of bins, no empty bin, and efficient computation for image classification and retrieval. This paper follows up on the study of adaptive histograms by applying them to texture classification, retrieval, and clustering. Adaptive histograms are generated from the amplitude of the discrete Fourier transform of images. Extensive comparisons with well-known texture features and dissimilarity measures show that, again, adaptive histograms and weighted correlation produce good overall performance.","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"19 1","pages":"II-II"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive histograms and dissimilarity measure for texture retrieval and classification\",\"authors\":\"F. S. Lim, W. Leow\",\"doi\":\"10.1109/ICIP.2002.1040078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histogram-based dissimilarity measures are extensively used for content-based image retrieval. In an earlier paper, we proposed an efficient weighted correlation dissimilarity measure for adaptive-binning color histograms. Compared to existing fixed-binning histograms and dissimilarity measures, adaptive histograms together with weighted correlation produce the best overall performance in terms of high accuracy, small number of bins, no empty bin, and efficient computation for image classification and retrieval. This paper follows up on the study of adaptive histograms by applying them to texture classification, retrieval, and clustering. Adaptive histograms are generated from the amplitude of the discrete Fourier transform of images. Extensive comparisons with well-known texture features and dissimilarity measures show that, again, adaptive histograms and weighted correlation produce good overall performance.\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"19 1\",\"pages\":\"II-II\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2002.1040078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2002.1040078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于直方图的不相似性度量被广泛用于基于内容的图像检索。在之前的一篇论文中,我们提出了一种有效的加权相关不相似度度量,用于自适应结合的颜色直方图。与现有的固定分类直方图和不相似度度量相比,自适应直方图结合加权相关性在图像分类和检索方面具有精度高、箱数少、无空箱、计算效率高等综合性能。本文对自适应直方图进行了进一步的研究,将其应用于纹理分类、检索和聚类。自适应直方图是由图像的离散傅里叶变换的振幅产生的。与众所周知的纹理特征和不相似性度量的广泛比较再次表明,自适应直方图和加权相关性产生了良好的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive histograms and dissimilarity measure for texture retrieval and classification
Histogram-based dissimilarity measures are extensively used for content-based image retrieval. In an earlier paper, we proposed an efficient weighted correlation dissimilarity measure for adaptive-binning color histograms. Compared to existing fixed-binning histograms and dissimilarity measures, adaptive histograms together with weighted correlation produce the best overall performance in terms of high accuracy, small number of bins, no empty bin, and efficient computation for image classification and retrieval. This paper follows up on the study of adaptive histograms by applying them to texture classification, retrieval, and clustering. Adaptive histograms are generated from the amplitude of the discrete Fourier transform of images. Extensive comparisons with well-known texture features and dissimilarity measures show that, again, adaptive histograms and weighted correlation produce good overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信