欧拉三叉方程级数解的证明

Fei Wang
{"title":"欧拉三叉方程级数解的证明","authors":"Fei Wang","doi":"10.1145/3055282.3055284","DOIUrl":null,"url":null,"abstract":"In 1779, Leonhard Euler published a paper about Lambert's transcendental equation in the symmetric form <i>x</i><sup><i>α</i></sup> − <i>x</i><sup><i>β</i></sup> = (<i>α</i> − <i>β</i>)<i>vx</i><sup><i>α</i>+<i>β</i></sup>. In the paper, he studied the series solution of this equation and other results based on an assumption which was not proved in the paper. Euler's paper gave the first series expanion for the so-called Lambert W function. In this work, we briefly review Euler's results and give a proof to modern standards of rigor of the series solution of Lambert's transcendental equation.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"136-144"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proof of a series solution for euler's trinomial equation\",\"authors\":\"Fei Wang\",\"doi\":\"10.1145/3055282.3055284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1779, Leonhard Euler published a paper about Lambert's transcendental equation in the symmetric form <i>x</i><sup><i>α</i></sup> − <i>x</i><sup><i>β</i></sup> = (<i>α</i> − <i>β</i>)<i>vx</i><sup><i>α</i>+<i>β</i></sup>. In the paper, he studied the series solution of this equation and other results based on an assumption which was not proved in the paper. Euler's paper gave the first series expanion for the so-called Lambert W function. In this work, we briefly review Euler's results and give a proof to modern standards of rigor of the series solution of Lambert's transcendental equation.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"1 1\",\"pages\":\"136-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055282.3055284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055282.3055284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

1779年,欧拉发表了一篇关于朗伯特超越方程的论文,其对称形式为xα−xβ = (α−β)vxα+β。在本文中,他基于一个假设研究了该方程的级数解和其他结果,而该假设在本文中没有得到证明。欧拉的论文给出了所谓的朗伯特W函数的第一个级数展开。在这项工作中,我们简要地回顾了欧拉的结果,并给出了兰伯特超越方程级数解的现代严格性标准的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a series solution for euler's trinomial equation
In 1779, Leonhard Euler published a paper about Lambert's transcendental equation in the symmetric form xαxβ = (αβ)vxα+β. In the paper, he studied the series solution of this equation and other results based on an assumption which was not proved in the paper. Euler's paper gave the first series expanion for the so-called Lambert W function. In this work, we briefly review Euler's results and give a proof to modern standards of rigor of the series solution of Lambert's transcendental equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信