{"title":"一类梯度型拟线性椭圆系统极小值的存在性","authors":"Federica Mennuni, A. Salvatore","doi":"10.3934/dcdss.2022013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{ \\begin{array}{ll} - {\\rm div} (a(x, u, \\nabla u)) + A_t (x, u,\\nabla u) = g_1(x, u, v) &{\\rm{ in}} \\; \\Omega ,\\\\ - {\\rm div} (B(x, v, \\nabla v)) + B_t (x, v,\\nabla v) = g_2(x, u, v) &{\\rm{ in}}\\; \\Omega ,\\\\ \\quad u = v = 0 &{\\rm{ on}}\\;\\partial\\Omega , \\end{array} \\right. $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega \\subset \\mathbb R^N $\\end{document}</tex-math></inline-formula> is an open bounded domain, <inline-formula><tex-math id=\"M2\">\\begin{document}$ N \\geq 2 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ A(x,t,\\xi) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ B(x,t, {\\xi}) $\\end{document}</tex-math></inline-formula> are <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathcal{C}^1 $\\end{document}</tex-math></inline-formula>–Carathéodory functions on <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Omega \\times \\mathbb R \\times { \\mathbb R}^{N} $\\end{document}</tex-math></inline-formula> with partial derivatives <inline-formula><tex-math id=\"M7\">\\begin{document}$ A_t = \\frac{\\partial A}{\\partial t} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ a = {\\nabla}_{\\xi}A $\\end{document}</tex-math></inline-formula>, respectively <inline-formula><tex-math id=\"M9\">\\begin{document}$ B_t = \\frac{\\partial B}{\\partial t} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ b = {\\nabla}_{{\\xi}}B $\\end{document}</tex-math></inline-formula>, while <inline-formula><tex-math id=\"M11\">\\begin{document}$ g_1(x,t,s) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">\\begin{document}$ g_2(x,t,s) $\\end{document}</tex-math></inline-formula> are given Carathéodory maps defined on <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\Omega \\times \\mathbb R\\times \\mathbb R $\\end{document}</tex-math></inline-formula> which are partial derivatives with respect to <inline-formula><tex-math id=\"M14\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M15\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula> of a function <inline-formula><tex-math id=\"M16\">\\begin{document}$ G(x,t,s) $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We prove that, even if the general form of the terms <inline-formula><tex-math id=\"M17\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M18\">\\begin{document}$ B $\\end{document}</tex-math></inline-formula> makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a \"right\" Banach space <inline-formula><tex-math id=\"M19\">\\begin{document}$ X $\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of minimizers for a quasilinear elliptic system of gradient type\",\"authors\":\"Federica Mennuni, A. Salvatore\",\"doi\":\"10.3934/dcdss.2022013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\left\\\\{ \\\\begin{array}{ll} - {\\\\rm div} (a(x, u, \\\\nabla u)) + A_t (x, u,\\\\nabla u) = g_1(x, u, v) &{\\\\rm{ in}} \\\\; \\\\Omega ,\\\\\\\\ - {\\\\rm div} (B(x, v, \\\\nabla v)) + B_t (x, v,\\\\nabla v) = g_2(x, u, v) &{\\\\rm{ in}}\\\\; \\\\Omega ,\\\\\\\\ \\\\quad u = v = 0 &{\\\\rm{ on}}\\\\;\\\\partial\\\\Omega , \\\\end{array} \\\\right. $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Omega \\\\subset \\\\mathbb R^N $\\\\end{document}</tex-math></inline-formula> is an open bounded domain, <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ N \\\\geq 2 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ A(x,t,\\\\xi) $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ B(x,t, {\\\\xi}) $\\\\end{document}</tex-math></inline-formula> are <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mathcal{C}^1 $\\\\end{document}</tex-math></inline-formula>–Carathéodory functions on <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\Omega \\\\times \\\\mathbb R \\\\times { \\\\mathbb R}^{N} $\\\\end{document}</tex-math></inline-formula> with partial derivatives <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ A_t = \\\\frac{\\\\partial A}{\\\\partial t} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ a = {\\\\nabla}_{\\\\xi}A $\\\\end{document}</tex-math></inline-formula>, respectively <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ B_t = \\\\frac{\\\\partial B}{\\\\partial t} $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ b = {\\\\nabla}_{{\\\\xi}}B $\\\\end{document}</tex-math></inline-formula>, while <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ g_1(x,t,s) $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ g_2(x,t,s) $\\\\end{document}</tex-math></inline-formula> are given Carathéodory maps defined on <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\Omega \\\\times \\\\mathbb R\\\\times \\\\mathbb R $\\\\end{document}</tex-math></inline-formula> which are partial derivatives with respect to <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ s $\\\\end{document}</tex-math></inline-formula> of a function <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ G(x,t,s) $\\\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We prove that, even if the general form of the terms <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ A $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ B $\\\\end{document}</tex-math></inline-formula> makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a \\\"right\\\" Banach space <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ X $\\\\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2022013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
The aim of this paper is to investigate the existence of weak solutions for the coupled quasilinear elliptic system of gradient type \begin{document}$ \left\{ \begin{array}{ll} - {\rm div} (a(x, u, \nabla u)) + A_t (x, u,\nabla u) = g_1(x, u, v) &{\rm{ in}} \; \Omega ,\\ - {\rm div} (B(x, v, \nabla v)) + B_t (x, v,\nabla v) = g_2(x, u, v) &{\rm{ in}}\; \Omega ,\\ \quad u = v = 0 &{\rm{ on}}\;\partial\Omega , \end{array} \right. $\end{document} where \begin{document}$ \Omega \subset \mathbb R^N $\end{document} is an open bounded domain, \begin{document}$ N \geq 2 $\end{document} and \begin{document}$ A(x,t,\xi) $\end{document}, \begin{document}$ B(x,t, {\xi}) $\end{document} are \begin{document}$ \mathcal{C}^1 $\end{document}–Carathéodory functions on \begin{document}$ \Omega \times \mathbb R \times { \mathbb R}^{N} $\end{document} with partial derivatives \begin{document}$ A_t = \frac{\partial A}{\partial t} $\end{document}, \begin{document}$ a = {\nabla}_{\xi}A $\end{document}, respectively \begin{document}$ B_t = \frac{\partial B}{\partial t} $\end{document}, \begin{document}$ b = {\nabla}_{{\xi}}B $\end{document}, while \begin{document}$ g_1(x,t,s) $\end{document}, \begin{document}$ g_2(x,t,s) $\end{document} are given Carathéodory maps defined on \begin{document}$ \Omega \times \mathbb R\times \mathbb R $\end{document} which are partial derivatives with respect to \begin{document}$ t $\end{document} and \begin{document}$ s $\end{document} of a function \begin{document}$ G(x,t,s) $\end{document}.We prove that, even if the general form of the terms \begin{document}$ A $\end{document} and \begin{document}$ B $\end{document} makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a "right" Banach space \begin{document}$ X $\end{document}.The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.
where \begin{document}$ \Omega \subset \mathbb R^N $\end{document} is an open bounded domain, \begin{document}$ N \geq 2 $\end{document} and \begin{document}$ A(x,t,\xi) $\end{document}, \begin{document}$ B(x,t, {\xi}) $\end{document} are \begin{document}$ \mathcal{C}^1 $\end{document}–Carathéodory functions on \begin{document}$ \Omega \times \mathbb R \times { \mathbb R}^{N} $\end{document} with partial derivatives \begin{document}$ A_t = \frac{\partial A}{\partial t} $\end{document}, \begin{document}$ a = {\nabla}_{\xi}A $\end{document}, respectively \begin{document}$ B_t = \frac{\partial B}{\partial t} $\end{document}, \begin{document}$ b = {\nabla}_{{\xi}}B $\end{document}, while \begin{document}$ g_1(x,t,s) $\end{document}, \begin{document}$ g_2(x,t,s) $\end{document} are given Carathéodory maps defined on \begin{document}$ \Omega \times \mathbb R\times \mathbb R $\end{document} which are partial derivatives with respect to \begin{document}$ t $\end{document} and \begin{document}$ s $\end{document} of a function \begin{document}$ G(x,t,s) $\end{document}.
We prove that, even if the general form of the terms \begin{document}$ A $\end{document} and \begin{document}$ B $\end{document} makes the variational approach more difficult, under suitable hypotheses, the functional related to the problem is bounded from below and attains its minimum in a "right" Banach space \begin{document}$ X $\end{document}.
The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition and a suitable generalization of the Weierstrass Theorem.