{"title":"测定静态再结晶分数的双重压缩的局限性","authors":"Baochun Zhao, Zhang Tao, Xiao Hu","doi":"10.1177/03093247221116033","DOIUrl":null,"url":null,"abstract":"It is well known that double deformation method is widely used to determine static recrystallization volume fraction. And static recrystallization volume fraction for many materials have ever been evaluated by the methods, as 0.2% offset, 2% offset, back-extrapolation, 5% total strain, mean flow stress and area (strain energy) methods. These methods are based on characteristic stress or strain energy (CS). However, materials can exhibit different flow behaviors during hot working process, which results in a difficulty to designate CS. Therefore, there are some limitations for the methods. In the present work, these six methods were divided into two groups: group I, the CS designated on experimental curves and group II, CS designated on semi-experimental curves. And typical curves were analyzed to find out the limitations of the methods, which can be used to rationalize the method selection to evaluate static recrystallization volume fraction.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limitations of double compression to determine static recrystallization fraction\",\"authors\":\"Baochun Zhao, Zhang Tao, Xiao Hu\",\"doi\":\"10.1177/03093247221116033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that double deformation method is widely used to determine static recrystallization volume fraction. And static recrystallization volume fraction for many materials have ever been evaluated by the methods, as 0.2% offset, 2% offset, back-extrapolation, 5% total strain, mean flow stress and area (strain energy) methods. These methods are based on characteristic stress or strain energy (CS). However, materials can exhibit different flow behaviors during hot working process, which results in a difficulty to designate CS. Therefore, there are some limitations for the methods. In the present work, these six methods were divided into two groups: group I, the CS designated on experimental curves and group II, CS designated on semi-experimental curves. And typical curves were analyzed to find out the limitations of the methods, which can be used to rationalize the method selection to evaluate static recrystallization volume fraction.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221116033\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221116033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Limitations of double compression to determine static recrystallization fraction
It is well known that double deformation method is widely used to determine static recrystallization volume fraction. And static recrystallization volume fraction for many materials have ever been evaluated by the methods, as 0.2% offset, 2% offset, back-extrapolation, 5% total strain, mean flow stress and area (strain energy) methods. These methods are based on characteristic stress or strain energy (CS). However, materials can exhibit different flow behaviors during hot working process, which results in a difficulty to designate CS. Therefore, there are some limitations for the methods. In the present work, these six methods were divided into two groups: group I, the CS designated on experimental curves and group II, CS designated on semi-experimental curves. And typical curves were analyzed to find out the limitations of the methods, which can be used to rationalize the method selection to evaluate static recrystallization volume fraction.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).