{"title":"逆向物流系统库存控制模型的仿真优化","authors":"Hanane Rachih, F. Mhada, R. Chiheb","doi":"10.5267/j.dsl.2021.9.001","DOIUrl":null,"url":null,"abstract":"Nowadays, companies are recognizing their primordial roles and responsibilities towards the protection of the environment and save the natural resources. They are focusing on some contemporary activities such as Reverse Logistics which is economically and environmentally viable. However, the integration of such an initiative needs flows restructuring and supply chain management in order to increase sustainability and maximize profits. Under this background, this paper addresses an inventory control model for a reverse logistics system that deals with two separated types of demand, for new products and remanufactured products, with different selling prices. The model consists of a single shared machine between production and remanufacturing operations, while the machine is subject to random failures and repairs. Three stock points respectively for returns, new products and remanufactured products are investigated. Meanwhile, in this paper, a modeling of the problem with Discrete-Event simulation using Arena® was conducted. Regarding the purpose of finding, a near-optimal inventory control policy that minimizes the total cost, an optimization of the model based on Tabu Search and Genetic Algorithms was established. Computational examples and sensitivity analysis were performed in order to compare the results and the robustness of each proposed algorithm. Then the results of the two methods were compared with those of OptQuest® optimization tool.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":"13 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simulation optimization of an inventory control model for a reverse logistics system\",\"authors\":\"Hanane Rachih, F. Mhada, R. Chiheb\",\"doi\":\"10.5267/j.dsl.2021.9.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, companies are recognizing their primordial roles and responsibilities towards the protection of the environment and save the natural resources. They are focusing on some contemporary activities such as Reverse Logistics which is economically and environmentally viable. However, the integration of such an initiative needs flows restructuring and supply chain management in order to increase sustainability and maximize profits. Under this background, this paper addresses an inventory control model for a reverse logistics system that deals with two separated types of demand, for new products and remanufactured products, with different selling prices. The model consists of a single shared machine between production and remanufacturing operations, while the machine is subject to random failures and repairs. Three stock points respectively for returns, new products and remanufactured products are investigated. Meanwhile, in this paper, a modeling of the problem with Discrete-Event simulation using Arena® was conducted. Regarding the purpose of finding, a near-optimal inventory control policy that minimizes the total cost, an optimization of the model based on Tabu Search and Genetic Algorithms was established. Computational examples and sensitivity analysis were performed in order to compare the results and the robustness of each proposed algorithm. Then the results of the two methods were compared with those of OptQuest® optimization tool.\",\"PeriodicalId\":38141,\"journal\":{\"name\":\"Decision Science Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.dsl.2021.9.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2021.9.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Simulation optimization of an inventory control model for a reverse logistics system
Nowadays, companies are recognizing their primordial roles and responsibilities towards the protection of the environment and save the natural resources. They are focusing on some contemporary activities such as Reverse Logistics which is economically and environmentally viable. However, the integration of such an initiative needs flows restructuring and supply chain management in order to increase sustainability and maximize profits. Under this background, this paper addresses an inventory control model for a reverse logistics system that deals with two separated types of demand, for new products and remanufactured products, with different selling prices. The model consists of a single shared machine between production and remanufacturing operations, while the machine is subject to random failures and repairs. Three stock points respectively for returns, new products and remanufactured products are investigated. Meanwhile, in this paper, a modeling of the problem with Discrete-Event simulation using Arena® was conducted. Regarding the purpose of finding, a near-optimal inventory control policy that minimizes the total cost, an optimization of the model based on Tabu Search and Genetic Algorithms was established. Computational examples and sensitivity analysis were performed in order to compare the results and the robustness of each proposed algorithm. Then the results of the two methods were compared with those of OptQuest® optimization tool.