基于考虑预加载和再加载的新型纤维桥接模型的应变硬化胶凝复合材料自愈后拉伸行为

Yangqing Liu, Bo Wu, J. Qiu
{"title":"基于考虑预加载和再加载的新型纤维桥接模型的应变硬化胶凝复合材料自愈后拉伸行为","authors":"Yangqing Liu, Bo Wu, J. Qiu","doi":"10.1051/matecconf/202337809005","DOIUrl":null,"url":null,"abstract":"The self-healing of strain-hardening cementitious composites (SHCCs) causes the recovery of the debonded fiber-to-matrix interface by the products of autogenous healing (mainly calcium carbonates). The recovery of chemical bond Gd has been detected in the reactive magnesia cement (RMC)-based SHCC (SHMC), and the recovery of frictional bond τ0 has been detected in both SHMCs and normal SHCCs. While these phenomena can significantly alter the fiber-bridging σ-w relationship in SHCCs, they have not been quantified in any existing analytical models. In this work, we present a new fiber-bridging model that captures the effect of self-healing of RMC-based SHCC. On the single-fiber level, the debonding and slip-hardening of the fiber-to-matrix interface induced by a tensile preloading as well as the recovery of the interface properties by self-healing are coherently quantified in a clear kinetic process. On the fiber-bridging level, the tensile stress vs. crack width curve is formed by summing individual fibers’ tensile load vs. displacement relationship. The modeling results can well capture the fiber-bridging behavior of the self-healed SHCC specimens. Further, a parametric study is conducted to investigate the tensile behavior of SHCC after self-healing. The effects of preloading levels, recovered τ0, and fiber strength are discussed.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile behavior of strain-hardening cementitious composites after self-healing based on a novel fiber-bridging model considering preloading and reloading\",\"authors\":\"Yangqing Liu, Bo Wu, J. Qiu\",\"doi\":\"10.1051/matecconf/202337809005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-healing of strain-hardening cementitious composites (SHCCs) causes the recovery of the debonded fiber-to-matrix interface by the products of autogenous healing (mainly calcium carbonates). The recovery of chemical bond Gd has been detected in the reactive magnesia cement (RMC)-based SHCC (SHMC), and the recovery of frictional bond τ0 has been detected in both SHMCs and normal SHCCs. While these phenomena can significantly alter the fiber-bridging σ-w relationship in SHCCs, they have not been quantified in any existing analytical models. In this work, we present a new fiber-bridging model that captures the effect of self-healing of RMC-based SHCC. On the single-fiber level, the debonding and slip-hardening of the fiber-to-matrix interface induced by a tensile preloading as well as the recovery of the interface properties by self-healing are coherently quantified in a clear kinetic process. On the fiber-bridging level, the tensile stress vs. crack width curve is formed by summing individual fibers’ tensile load vs. displacement relationship. The modeling results can well capture the fiber-bridging behavior of the self-healed SHCC specimens. Further, a parametric study is conducted to investigate the tensile behavior of SHCC after self-healing. The effects of preloading levels, recovered τ0, and fiber strength are discussed.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337809005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337809005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应变硬化胶凝复合材料(SHCCs)的自愈作用是通过自愈产物(主要是碳酸钙)使脱落的纤维-基体界面恢复。在活性镁水泥(RMC)基SHCC (SHMC)中检测到化学键Gd的恢复,在SHMC和正常SHCC中检测到摩擦键τ0的恢复。虽然这些现象可以显著改变shcc中光纤桥接的σ-w关系,但在现有的分析模型中尚未对其进行量化。在这项工作中,我们提出了一种新的纤维桥接模型,该模型捕捉了基于rmc的SHCC的自愈效果。在单纤维水平上,拉伸预加载引起的纤维-基体界面的脱粘和滑移硬化以及自修复引起的界面性能的恢复在一个明确的动力学过程中得到了一致的量化。在纤维桥接水平上,拉应力与裂缝宽度曲线由单个纤维的拉伸载荷与位移关系求和而成。模拟结果较好地反映了自愈SHCC试件的纤维桥接行为。此外,进行了参数研究,以探讨自愈后SHCC的拉伸行为。讨论了预压水平、恢复τ0和纤维强度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensile behavior of strain-hardening cementitious composites after self-healing based on a novel fiber-bridging model considering preloading and reloading
The self-healing of strain-hardening cementitious composites (SHCCs) causes the recovery of the debonded fiber-to-matrix interface by the products of autogenous healing (mainly calcium carbonates). The recovery of chemical bond Gd has been detected in the reactive magnesia cement (RMC)-based SHCC (SHMC), and the recovery of frictional bond τ0 has been detected in both SHMCs and normal SHCCs. While these phenomena can significantly alter the fiber-bridging σ-w relationship in SHCCs, they have not been quantified in any existing analytical models. In this work, we present a new fiber-bridging model that captures the effect of self-healing of RMC-based SHCC. On the single-fiber level, the debonding and slip-hardening of the fiber-to-matrix interface induced by a tensile preloading as well as the recovery of the interface properties by self-healing are coherently quantified in a clear kinetic process. On the fiber-bridging level, the tensile stress vs. crack width curve is formed by summing individual fibers’ tensile load vs. displacement relationship. The modeling results can well capture the fiber-bridging behavior of the self-healed SHCC specimens. Further, a parametric study is conducted to investigate the tensile behavior of SHCC after self-healing. The effects of preloading levels, recovered τ0, and fiber strength are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信