{"title":"使用结构语法理解文本的AI:解析改进","authors":"Denis Kiselev","doi":"10.4018/ijcini.20210401.oa4","DOIUrl":null,"url":null,"abstract":"This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An AI Using Construction Grammar to Understand Text: Parsing Improvements\",\"authors\":\"Denis Kiselev\",\"doi\":\"10.4018/ijcini.20210401.oa4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20210401.oa4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An AI Using Construction Grammar to Understand Text: Parsing Improvements
This paper describes an AI that uses construction grammar (CG)—a means of knowledge representation for deep understanding of text. The proposed improvements aim at more versatility of the text form and meaning knowledge structure, as well as for intelligent choosing among possible parses. Along with the improvements, computational CG techniques that form the implementation basis are explained. Evaluation experiments utilize a Winograd schema (WS)—a major test for AI—dataset and compare the implementation with state-of-the-art ones. Results have demonstrated that compared with such techniques as deep learning, the proposed CG approach has a higher potential for the task of anaphora resolution involving deep understanding of the natural language.