使用深度学习神经网络进行踝关节扭伤预防的扭伤和非扭伤运动分类

Q3 Computer Science
Natrisha Francis, Suhaimi Suhaimi, E. Abas
{"title":"使用深度学习神经网络进行踝关节扭伤预防的扭伤和非扭伤运动分类","authors":"Natrisha Francis, Suhaimi Suhaimi, E. Abas","doi":"10.47839/ijc.22.2.3085","DOIUrl":null,"url":null,"abstract":"A smart wearable ankle sprain prevention device would require an intelligent monitoring system that can classify data from the sensors as sprain or non-sprain motion. This paper aims to explore Deep Neural Network method, specifically the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) for classifying sprain and non-sprain motion. A study is conducted on 11 participants to record sprain and non-sprain motions, which are used to train and test the LSTM-FCN model and previously used Support Vector Machine (SVM) model. It has been demonstrated that the LSTM-FCN model is more accurate at classifying sprain and non-sprain motion. The LSTM-FCN also proved to be more useful as its architecture allows for the Class Activation Mapping (CAM) method to be employed. The CAM method allows for the identification of temporal regions of the time series that contribute most or least to the classification decision of the LSTMFCN. Visualizing the regions of high or low contribution makes it easy to see patterns in the data correlation with sprain motion and better understand why certain non-sprain data can be misclassified as sprain motion. Overall, LSTM-FCN is found to be a viable method for the classification of sprain and non-sprain motion.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Sprain and Non-sprain Motion using Deep Learning Neural Networks for Ankle Sprain Prevention\",\"authors\":\"Natrisha Francis, Suhaimi Suhaimi, E. Abas\",\"doi\":\"10.47839/ijc.22.2.3085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A smart wearable ankle sprain prevention device would require an intelligent monitoring system that can classify data from the sensors as sprain or non-sprain motion. This paper aims to explore Deep Neural Network method, specifically the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) for classifying sprain and non-sprain motion. A study is conducted on 11 participants to record sprain and non-sprain motions, which are used to train and test the LSTM-FCN model and previously used Support Vector Machine (SVM) model. It has been demonstrated that the LSTM-FCN model is more accurate at classifying sprain and non-sprain motion. The LSTM-FCN also proved to be more useful as its architecture allows for the Class Activation Mapping (CAM) method to be employed. The CAM method allows for the identification of temporal regions of the time series that contribute most or least to the classification decision of the LSTMFCN. Visualizing the regions of high or low contribution makes it easy to see patterns in the data correlation with sprain motion and better understand why certain non-sprain data can be misclassified as sprain motion. Overall, LSTM-FCN is found to be a viable method for the classification of sprain and non-sprain motion.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.22.2.3085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.2.3085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

智能可穿戴脚踝扭伤预防设备需要一个智能监控系统,该系统可以将来自传感器的数据分类为扭伤或非扭伤运动。本文旨在探索深度神经网络方法,特别是长短期记忆全卷积网络(LSTM-FCN)对扭伤和非扭伤运动的分类。研究对11名参与者进行扭伤和非扭伤运动记录,用于训练和测试LSTM-FCN模型和之前使用的支持向量机(SVM)模型。结果表明,LSTM-FCN模型对扭伤和非扭伤运动的分类更为准确。LSTM-FCN也被证明更有用,因为它的体系结构允许使用类激活映射(CAM)方法。CAM方法允许识别时间序列中对LSTMFCN分类决策贡献最大或最小的时间区域。可视化高或低贡献区域可以很容易地看到与扭伤运动相关的数据模式,并更好地理解为什么某些非扭伤数据可能被错误地归类为扭伤运动。综上所述,LSTM-FCN是一种可行的扭伤和非扭伤运动分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Sprain and Non-sprain Motion using Deep Learning Neural Networks for Ankle Sprain Prevention
A smart wearable ankle sprain prevention device would require an intelligent monitoring system that can classify data from the sensors as sprain or non-sprain motion. This paper aims to explore Deep Neural Network method, specifically the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) for classifying sprain and non-sprain motion. A study is conducted on 11 participants to record sprain and non-sprain motions, which are used to train and test the LSTM-FCN model and previously used Support Vector Machine (SVM) model. It has been demonstrated that the LSTM-FCN model is more accurate at classifying sprain and non-sprain motion. The LSTM-FCN also proved to be more useful as its architecture allows for the Class Activation Mapping (CAM) method to be employed. The CAM method allows for the identification of temporal regions of the time series that contribute most or least to the classification decision of the LSTMFCN. Visualizing the regions of high or low contribution makes it easy to see patterns in the data correlation with sprain motion and better understand why certain non-sprain data can be misclassified as sprain motion. Overall, LSTM-FCN is found to be a viable method for the classification of sprain and non-sprain motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信