自交稳定广义复杂结构

Pub Date : 2020-04-16 DOI:10.4310/jsg.2022.v20.n4.a1
G. Cavalcanti, R. Klaasse, A. Witte
{"title":"自交稳定广义复杂结构","authors":"G. Cavalcanti, R. Klaasse, A. Witte","doi":"10.4310/jsg.2022.v20.n4.a1","DOIUrl":null,"url":null,"abstract":"We extend the notion of (smooth) stable generalized complex structures to allow for an anticanonical section with normal self-crossing singularities. This weakening not only allows for a number of natural examples in higher dimensions but also sheds some light into the smooth case in dimension four. We show that in four dimensions there is a natural connected sum operation for these structures as well as a smoothing operation which changes a self-crossing stable generalized complex structure into a smooth stable generalized complex structure on the same manifold. This allows us to construct large families of stable generalized complex manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Self-crossing stable generalized complex structures\",\"authors\":\"G. Cavalcanti, R. Klaasse, A. Witte\",\"doi\":\"10.4310/jsg.2022.v20.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the notion of (smooth) stable generalized complex structures to allow for an anticanonical section with normal self-crossing singularities. This weakening not only allows for a number of natural examples in higher dimensions but also sheds some light into the smooth case in dimension four. We show that in four dimensions there is a natural connected sum operation for these structures as well as a smoothing operation which changes a self-crossing stable generalized complex structure into a smooth stable generalized complex structure on the same manifold. This allows us to construct large families of stable generalized complex manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n4.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n4.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们扩展了(光滑)稳定广义复杂结构的概念,以允许具有正常自交叉奇点的反正则截面。这种弱化不仅允许在高维中出现一些自然的例子,而且也为四维中的光滑情况提供了一些启示。我们证明了在四维空间中,这些结构存在一个自然的连通和运算以及一个平滑运算,使自交叉稳定广义复结构在同一流形上变为光滑稳定广义复结构。这允许我们构造大族的稳定广义复流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Self-crossing stable generalized complex structures
We extend the notion of (smooth) stable generalized complex structures to allow for an anticanonical section with normal self-crossing singularities. This weakening not only allows for a number of natural examples in higher dimensions but also sheds some light into the smooth case in dimension four. We show that in four dimensions there is a natural connected sum operation for these structures as well as a smoothing operation which changes a self-crossing stable generalized complex structure into a smooth stable generalized complex structure on the same manifold. This allows us to construct large families of stable generalized complex manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信