一阶导数假设下具有可分差分的多步高阶方法的局部收敛性

IF 0.1 Q4 MATHEMATICS
I. Argyros, S. George
{"title":"一阶导数假设下具有可分差分的多步高阶方法的局部收敛性","authors":"I. Argyros, S. George","doi":"10.1515/aupcsm-2017-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator involved. Our convergence conditions are weaker than the conditions used in earlier studies. Numerical examples where earlier results cannot be applied to solve equations but our results can be applied are also given in this study.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"94 1","pages":"41 - 50"},"PeriodicalIF":0.1000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.1515/aupcsm-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator involved. Our convergence conditions are weaker than the conditions used in earlier studies. Numerical examples where earlier results cannot be applied to solve equations but our results can be applied are also given in this study.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"94 1\",\"pages\":\"41 - 50\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aupcsm-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aupcsm-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了Banach空间中非线性方程的一种分差多步解法。在早期的研究中,为了证明该方法的收敛性,使用了对所考虑的算子的六阶前的fr导数的假设。这限制了该方法的适用性。本文仅利用对算子一阶导数的假设,扩展了六阶多步法的适用性。我们的收敛条件比早期研究中使用的条件弱。文中还给出了前人的结果不能用于求解方程而我们的结果可以应用的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative
Abstract This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator involved. Our convergence conditions are weaker than the conditions used in earlier studies. Numerical examples where earlier results cannot be applied to solve equations but our results can be applied are also given in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信