{"title":"洪水风险制图补贴的概念与分析框架","authors":"L. Batista, Alfredo Ribeiro Neto","doi":"10.3390/geohazards3030020","DOIUrl":null,"url":null,"abstract":"There are still gaps in defining values and category classifications of exposed items in quantitative damage analysis. This paper proposes a framework that refines the development of flood risk analysis at a local scale. This study first performs a quantitative risk analysis, based mainly on secondary data; it then attempts to communicate the results graphically, aiming to reduce the financial and human resources required. We propose an easily standardized database in a GIS environment, analyzing the influence of a reservoir for flood control and the construction of replicable local-scale risk curves. Hydrological (HEC-HMS) and 2D hydrodynamic (HEC-RAS) models were used to simulate hydrographs considering different return periods. For damage estimation, the processing included vectorization of lots, building use definition with Google Street View, classification of standard designs, and a field survey to validate those classes. In monetary value, this study calculated the effect of the construction of a reservoir for damage reduction, showing the potential to determine the effectiveness of measures adopted to mitigate flood impacts. In addition, for each simulated return period, exposure, hazard, and damage maps can be established, making it possible to perform a complete risk analysis.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"70 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conceptual and Analytical Framework as Flood Risk Mapping Subsidy\",\"authors\":\"L. Batista, Alfredo Ribeiro Neto\",\"doi\":\"10.3390/geohazards3030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are still gaps in defining values and category classifications of exposed items in quantitative damage analysis. This paper proposes a framework that refines the development of flood risk analysis at a local scale. This study first performs a quantitative risk analysis, based mainly on secondary data; it then attempts to communicate the results graphically, aiming to reduce the financial and human resources required. We propose an easily standardized database in a GIS environment, analyzing the influence of a reservoir for flood control and the construction of replicable local-scale risk curves. Hydrological (HEC-HMS) and 2D hydrodynamic (HEC-RAS) models were used to simulate hydrographs considering different return periods. For damage estimation, the processing included vectorization of lots, building use definition with Google Street View, classification of standard designs, and a field survey to validate those classes. In monetary value, this study calculated the effect of the construction of a reservoir for damage reduction, showing the potential to determine the effectiveness of measures adopted to mitigate flood impacts. In addition, for each simulated return period, exposure, hazard, and damage maps can be established, making it possible to perform a complete risk analysis.\",\"PeriodicalId\":48524,\"journal\":{\"name\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geohazards3030020\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geohazards3030020","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Conceptual and Analytical Framework as Flood Risk Mapping Subsidy
There are still gaps in defining values and category classifications of exposed items in quantitative damage analysis. This paper proposes a framework that refines the development of flood risk analysis at a local scale. This study first performs a quantitative risk analysis, based mainly on secondary data; it then attempts to communicate the results graphically, aiming to reduce the financial and human resources required. We propose an easily standardized database in a GIS environment, analyzing the influence of a reservoir for flood control and the construction of replicable local-scale risk curves. Hydrological (HEC-HMS) and 2D hydrodynamic (HEC-RAS) models were used to simulate hydrographs considering different return periods. For damage estimation, the processing included vectorization of lots, building use definition with Google Street View, classification of standard designs, and a field survey to validate those classes. In monetary value, this study calculated the effect of the construction of a reservoir for damage reduction, showing the potential to determine the effectiveness of measures adopted to mitigate flood impacts. In addition, for each simulated return period, exposure, hazard, and damage maps can be established, making it possible to perform a complete risk analysis.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.