马尔可夫模型的预测能力:来自美国经济衰退预测的证据

R. Tian, Gang Shen
{"title":"马尔可夫模型的预测能力:来自美国经济衰退预测的证据","authors":"R. Tian, Gang Shen","doi":"10.2139/ssrn.3152699","DOIUrl":null,"url":null,"abstract":"This paper brings new evidence of predicting the U.S. recessions through Markovian models. The Markovian models, including the Hidden Markov and Markov models, incorporate the temporal autocorrelation of binary recession indicators in a more traditional and natural way. Considering interest rates and spreads, stock prices, monetary aggregates, and output as the candidate predictors, we examine the out-of-sample performance of the Markovian models in predicting the recessions one to twelve months ahead. The Markovian models are superior to the probit models in detecting a recession and capturing the recession duration. We find the \"one-month lag phenomenon\" that the best Markovian model supported by statistical model selection procedures can always recognize the onset of a recession one month after it starts. In addition, the yield spread continues to serve as the most e\u000ecient predictor variable in explaining business cycles.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive Power of Markovian Models: Evidence from U.S. Recession Forecasting\",\"authors\":\"R. Tian, Gang Shen\",\"doi\":\"10.2139/ssrn.3152699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper brings new evidence of predicting the U.S. recessions through Markovian models. The Markovian models, including the Hidden Markov and Markov models, incorporate the temporal autocorrelation of binary recession indicators in a more traditional and natural way. Considering interest rates and spreads, stock prices, monetary aggregates, and output as the candidate predictors, we examine the out-of-sample performance of the Markovian models in predicting the recessions one to twelve months ahead. The Markovian models are superior to the probit models in detecting a recession and capturing the recession duration. We find the \\\"one-month lag phenomenon\\\" that the best Markovian model supported by statistical model selection procedures can always recognize the onset of a recession one month after it starts. In addition, the yield spread continues to serve as the most e\\u000ecient predictor variable in explaining business cycles.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3152699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3152699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文为利用马尔可夫模型预测美国经济衰退提供了新的证据。马尔可夫模型,包括隐马尔可夫模型和马尔可夫模型,以一种更传统和自然的方式将二元衰退指标的时间自相关性纳入其中。考虑到利率和利差、股票价格、货币总量和产出作为候选预测指标,我们检验了马尔可夫模型在预测未来一到十二个月的衰退时的样本外表现。马尔可夫模型在检测衰退和捕获衰退持续时间方面优于probit模型。我们发现了“一个月滞后现象”,即在统计模型选择程序支持下的最佳马尔可夫模型总能在衰退开始一个月后识别出衰退的开始。此外,在解释商业周期时,收益率息差仍然是最可靠的预测变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Power of Markovian Models: Evidence from U.S. Recession Forecasting
This paper brings new evidence of predicting the U.S. recessions through Markovian models. The Markovian models, including the Hidden Markov and Markov models, incorporate the temporal autocorrelation of binary recession indicators in a more traditional and natural way. Considering interest rates and spreads, stock prices, monetary aggregates, and output as the candidate predictors, we examine the out-of-sample performance of the Markovian models in predicting the recessions one to twelve months ahead. The Markovian models are superior to the probit models in detecting a recession and capturing the recession duration. We find the "one-month lag phenomenon" that the best Markovian model supported by statistical model selection procedures can always recognize the onset of a recession one month after it starts. In addition, the yield spread continues to serve as the most ecient predictor variable in explaining business cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信