Õptimal双顶点故障连接标签

M. Parter, Asaf Petruschka
{"title":"Õptimal双顶点故障连接标签","authors":"M. Parter, Asaf Petruschka","doi":"10.48550/arXiv.2208.10168","DOIUrl":null,"url":null,"abstract":"In this paper we present succinct labeling schemes for supporting connectivity queries under vertex faults. For a given $n$-vertex graph $G$, an $f$-VFT (resp., EFT) connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of a vertex pair $u$ and $v$, and the labels of at most $f$ failing vertices (resp., edges) $F$, one can determine if $u$ and $v$ are connected in $G \\setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS '07], FT labeling schemes have been devised only for a limited collection of graph families. A recent work [Dory and Parter, PODC 2021] provided EFT labeling schemes for general graphs under edge failures, leaving the vertex failure case fairly open. We provide the first sublinear $f$-VFT labeling schemes for $f \\geq 2$ for any $n$-vertex graph. Our key result is $2$-VFT connectivity labels with $O(\\log^3 n)$ bits. Our constructions are based on analyzing the structure of dual failure replacement paths on top of the well-known heavy-light tree decomposition technique of [Sleator and Tarjan, STOC 1981]. We also provide $f$-VFT labels with sub-linear length (in $|V|$) for any $f=o(\\log\\log n)$, that are based on a reduction to the existing EFT labels.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"13 1","pages":"32:1-32:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Õptimal Dual Vertex Failure Connectivity Labels\",\"authors\":\"M. Parter, Asaf Petruschka\",\"doi\":\"10.48550/arXiv.2208.10168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present succinct labeling schemes for supporting connectivity queries under vertex faults. For a given $n$-vertex graph $G$, an $f$-VFT (resp., EFT) connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of a vertex pair $u$ and $v$, and the labels of at most $f$ failing vertices (resp., edges) $F$, one can determine if $u$ and $v$ are connected in $G \\\\setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS '07], FT labeling schemes have been devised only for a limited collection of graph families. A recent work [Dory and Parter, PODC 2021] provided EFT labeling schemes for general graphs under edge failures, leaving the vertex failure case fairly open. We provide the first sublinear $f$-VFT labeling schemes for $f \\\\geq 2$ for any $n$-vertex graph. Our key result is $2$-VFT connectivity labels with $O(\\\\log^3 n)$ bits. Our constructions are based on analyzing the structure of dual failure replacement paths on top of the well-known heavy-light tree decomposition technique of [Sleator and Tarjan, STOC 1981]. We also provide $f$-VFT labels with sub-linear length (in $|V|$) for any $f=o(\\\\log\\\\log n)$, that are based on a reduction to the existing EFT labels.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"13 1\",\"pages\":\"32:1-32:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.10168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.10168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了简洁的标记方案来支持顶点错误下的连通性查询。对于一个给定的$n$ -顶点图$G$, $f$ -VFT(参见:(EFT)连通性标记方案是一种分布式数据结构,它为每个图边和顶点分配一个短标签,这样,给定顶点对的标签$u$和$v$,以及最多$f$个失败顶点的标签(见图1)。(边)$F$,可以确定$u$和$v$是否在$G \setminus F$中连接。主要的复杂性度量是单个标签的长度。自[Courcelle, Twigg, STACS '07]引入以来,FT标记方案仅用于有限的图族集合。最近的一项研究[Dory and partner, PODC 2021]为边缘失效的一般图提供了EFT标记方案,使顶点失效的情况相当开放。对于任意$n$顶点图,我们提供了$f \geq 2$的第一个次线性$f$ -VFT标记方案。我们的关键结果是$2$ -VFT连接标签与$O(\log^3 n)$位。我们的构建是基于对双重失效替换路径结构的分析,基于著名的重-轻树分解技术[Sleator和Tarjan, STOC 1981]。我们还为任何$f=o(\log\log n)$提供了具有亚线性长度的$f$ -VFT标签(在$|V|$中),这些标签基于对现有EFT标签的简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Õptimal Dual Vertex Failure Connectivity Labels
In this paper we present succinct labeling schemes for supporting connectivity queries under vertex faults. For a given $n$-vertex graph $G$, an $f$-VFT (resp., EFT) connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of a vertex pair $u$ and $v$, and the labels of at most $f$ failing vertices (resp., edges) $F$, one can determine if $u$ and $v$ are connected in $G \setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS '07], FT labeling schemes have been devised only for a limited collection of graph families. A recent work [Dory and Parter, PODC 2021] provided EFT labeling schemes for general graphs under edge failures, leaving the vertex failure case fairly open. We provide the first sublinear $f$-VFT labeling schemes for $f \geq 2$ for any $n$-vertex graph. Our key result is $2$-VFT connectivity labels with $O(\log^3 n)$ bits. Our constructions are based on analyzing the structure of dual failure replacement paths on top of the well-known heavy-light tree decomposition technique of [Sleator and Tarjan, STOC 1981]. We also provide $f$-VFT labels with sub-linear length (in $|V|$) for any $f=o(\log\log n)$, that are based on a reduction to the existing EFT labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信