甲烷+四丁基溴化铵(TBAB)/四丁基乙酸铵(TBAA) +水体系的半笼合物水合物相稳定性条件:实验测量和热力学建模

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS
Hamid Irannezhad, J. Javanmardi, Ali Rasoolzadeh, K. Mehrabi, A. Mohammadi
{"title":"甲烷+四丁基溴化铵(TBAB)/四丁基乙酸铵(TBAA) +水体系的半笼合物水合物相稳定性条件:实验测量和热力学建模","authors":"Hamid Irannezhad, J. Javanmardi, Ali Rasoolzadeh, K. Mehrabi, A. Mohammadi","doi":"10.2516/ogst/2021055","DOIUrl":null,"url":null,"abstract":"One of the promising applications of clathrate/gas hydrates is the transport and storage of natural gas. Semi-clathrate hydrates have received more attention due to milder pressure/temperature stability conditions compared to ordinary clathrate hydrates. The most commonly reported semi-clathrate hydrates are formed from a combination of gas + water + quaternary ammonium salts. In this work, a total of 53 equilibrium data for semi-clathrate hydrates of methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) aqueous solutions were experimentally measured. For TBAB, three concentrations including 0.0350, 0.0490, and 0.1500 mass fractions were used. For TBAA, a solution with a 0.0990 mass fraction was used. Additionally, the modified Chen–Guo model was applied to calculate the hydrate phase equilibrium conditions of methane + TBAB/TBAA aqueous solutions. The model can accurately calculate the aforementioned semi-clathrate hydrate phase equilibrium conditions with the Average Absolute Deviations ((AAD)T and (AAD)P) of 0.1 K and 0.08 MPa, respectively. The temperature increments for 0.0350, 0.0490, and 0.1500 mass fractions of TBAB are 7.7, 9.4, and 13.5 K, respectively. This value for 0.0990 mass fraction of TBAA is 6.2 K. Therefore, it is concluded that TBAB is a stronger hydrate promoter compared to TBAA.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"90 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-clathrate hydrate phase stability conditions for methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) + water system: Experimental measurements and thermodynamic modeling\",\"authors\":\"Hamid Irannezhad, J. Javanmardi, Ali Rasoolzadeh, K. Mehrabi, A. Mohammadi\",\"doi\":\"10.2516/ogst/2021055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the promising applications of clathrate/gas hydrates is the transport and storage of natural gas. Semi-clathrate hydrates have received more attention due to milder pressure/temperature stability conditions compared to ordinary clathrate hydrates. The most commonly reported semi-clathrate hydrates are formed from a combination of gas + water + quaternary ammonium salts. In this work, a total of 53 equilibrium data for semi-clathrate hydrates of methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) aqueous solutions were experimentally measured. For TBAB, three concentrations including 0.0350, 0.0490, and 0.1500 mass fractions were used. For TBAA, a solution with a 0.0990 mass fraction was used. Additionally, the modified Chen–Guo model was applied to calculate the hydrate phase equilibrium conditions of methane + TBAB/TBAA aqueous solutions. The model can accurately calculate the aforementioned semi-clathrate hydrate phase equilibrium conditions with the Average Absolute Deviations ((AAD)T and (AAD)P) of 0.1 K and 0.08 MPa, respectively. The temperature increments for 0.0350, 0.0490, and 0.1500 mass fractions of TBAB are 7.7, 9.4, and 13.5 K, respectively. This value for 0.0990 mass fraction of TBAA is 6.2 K. Therefore, it is concluded that TBAB is a stronger hydrate promoter compared to TBAA.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021055\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

摘要

包合物/天然气水合物的一个很有前途的应用是天然气的运输和储存。由于与普通包合物水合物相比,半包合物水合物具有更温和的压力/温度稳定性条件,因此受到了更多的关注。最常见的半笼状水合物是由气体+水+季铵盐的组合形成的。实验测量了甲烷+四丁基溴化铵(TBAB)/乙酸四丁基铵(TBAA)水溶液半笼形水合物的53个平衡数据。TBAB采用0.0350、0.0490和0.1500质量分数三种浓度。对于TBAA,采用质量分数为0.0990的溶液。此外,应用改进的Chen-Guo模型计算了甲烷+ TBAB/TBAA水溶液的水合物相平衡条件。该模型能准确地计算出上述半包合物水合物相平衡条件,平均绝对偏差(AAD)T和(AAD)P分别为0.1 K和0.08 MPa。0.0350、0.0490和0.1500质量分数的温度增量分别为7.7、9.4和13.5 K。0.0990 TBAA质量分数的值为6.2 K。因此,与TBAA相比,TBAB是一种更强的水合物促进剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-clathrate hydrate phase stability conditions for methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) + water system: Experimental measurements and thermodynamic modeling
One of the promising applications of clathrate/gas hydrates is the transport and storage of natural gas. Semi-clathrate hydrates have received more attention due to milder pressure/temperature stability conditions compared to ordinary clathrate hydrates. The most commonly reported semi-clathrate hydrates are formed from a combination of gas + water + quaternary ammonium salts. In this work, a total of 53 equilibrium data for semi-clathrate hydrates of methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) aqueous solutions were experimentally measured. For TBAB, three concentrations including 0.0350, 0.0490, and 0.1500 mass fractions were used. For TBAA, a solution with a 0.0990 mass fraction was used. Additionally, the modified Chen–Guo model was applied to calculate the hydrate phase equilibrium conditions of methane + TBAB/TBAA aqueous solutions. The model can accurately calculate the aforementioned semi-clathrate hydrate phase equilibrium conditions with the Average Absolute Deviations ((AAD)T and (AAD)P) of 0.1 K and 0.08 MPa, respectively. The temperature increments for 0.0350, 0.0490, and 0.1500 mass fractions of TBAB are 7.7, 9.4, and 13.5 K, respectively. This value for 0.0990 mass fraction of TBAA is 6.2 K. Therefore, it is concluded that TBAB is a stronger hydrate promoter compared to TBAA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信