{"title":"基于单量子点SOA和光滤波器的全光NOR门仿真","authors":"K. Komatsu, G. Hosoya, H. Yashima","doi":"10.1109/CLEOPR.2017.8119064","DOIUrl":null,"url":null,"abstract":"We propose an ultrafast all optical NOR gate for 160 Gb/s return-to-zero Gaussian data signals using a single quantum-dot semiconductor optical amplifier (QD-SOA) and optical filter (OF). By conducting numerical simulations, we investigate and evaluate the impacts of probe wavelength and power of the involved signals on the extinction ratio (ER) and Q2-factor. Results show that the proposed NOR gate can be achieved both with logical correctness and high quality when the specified conditions are satisfied.","PeriodicalId":6655,"journal":{"name":"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","volume":"81 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of all-optical NOR gate using single quantum-dot SOA and optical filter\",\"authors\":\"K. Komatsu, G. Hosoya, H. Yashima\",\"doi\":\"10.1109/CLEOPR.2017.8119064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an ultrafast all optical NOR gate for 160 Gb/s return-to-zero Gaussian data signals using a single quantum-dot semiconductor optical amplifier (QD-SOA) and optical filter (OF). By conducting numerical simulations, we investigate and evaluate the impacts of probe wavelength and power of the involved signals on the extinction ratio (ER) and Q2-factor. Results show that the proposed NOR gate can be achieved both with logical correctness and high quality when the specified conditions are satisfied.\",\"PeriodicalId\":6655,\"journal\":{\"name\":\"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"volume\":\"81 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOPR.2017.8119064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOPR.2017.8119064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of all-optical NOR gate using single quantum-dot SOA and optical filter
We propose an ultrafast all optical NOR gate for 160 Gb/s return-to-zero Gaussian data signals using a single quantum-dot semiconductor optical amplifier (QD-SOA) and optical filter (OF). By conducting numerical simulations, we investigate and evaluate the impacts of probe wavelength and power of the involved signals on the extinction ratio (ER) and Q2-factor. Results show that the proposed NOR gate can be achieved both with logical correctness and high quality when the specified conditions are satisfied.