{"title":"磁流变阻尼器逆建模依赖于操作条件","authors":"M. Wolnica","doi":"10.7494/MECH.2013.32.2.82","DOIUrl":null,"url":null,"abstract":"For semi-active control of vehicle suspension magnetoreological (MR) dampers are usually used. Construction of such dampers suggests that their properties should be dependent on fluid temperature, current of the coil and the relative velocity of the rod, which all change during operation. Then, an inverse model used to work out the current based on the required damping force may not be adequate, and performance of the overall semi-active control system can be significantly degraded. MR damper reaches its operating temperature in a short period of time, and thus it should be modelled, and the obtained inverse model should reflect such state. However, it has been observed that the hysteric behavior of the MR damper significantly differs depending on the current. The paper presents results of such analysis and recommends using a set of simple models appropriate for different ranges of this parameter. During control the models should be switched to guarantee the best operating conditions. Experiments for this research have been performed using MTS system.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"1 1","pages":"82"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS\",\"authors\":\"M. Wolnica\",\"doi\":\"10.7494/MECH.2013.32.2.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For semi-active control of vehicle suspension magnetoreological (MR) dampers are usually used. Construction of such dampers suggests that their properties should be dependent on fluid temperature, current of the coil and the relative velocity of the rod, which all change during operation. Then, an inverse model used to work out the current based on the required damping force may not be adequate, and performance of the overall semi-active control system can be significantly degraded. MR damper reaches its operating temperature in a short period of time, and thus it should be modelled, and the obtained inverse model should reflect such state. However, it has been observed that the hysteric behavior of the MR damper significantly differs depending on the current. The paper presents results of such analysis and recommends using a set of simple models appropriate for different ranges of this parameter. During control the models should be switched to guarantee the best operating conditions. Experiments for this research have been performed using MTS system.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"1 1\",\"pages\":\"82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.2.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.2.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS
For semi-active control of vehicle suspension magnetoreological (MR) dampers are usually used. Construction of such dampers suggests that their properties should be dependent on fluid temperature, current of the coil and the relative velocity of the rod, which all change during operation. Then, an inverse model used to work out the current based on the required damping force may not be adequate, and performance of the overall semi-active control system can be significantly degraded. MR damper reaches its operating temperature in a short period of time, and thus it should be modelled, and the obtained inverse model should reflect such state. However, it has been observed that the hysteric behavior of the MR damper significantly differs depending on the current. The paper presents results of such analysis and recommends using a set of simple models appropriate for different ranges of this parameter. During control the models should be switched to guarantee the best operating conditions. Experiments for this research have been performed using MTS system.