Nicoleta Spînu , Mark T.D. Cronin , Judith C. Madden , Andrew P. Worth
{"title":"信任问题:了解因果关系将使质量保证计划可信","authors":"Nicoleta Spînu , Mark T.D. Cronin , Judith C. Madden , Andrew P. Worth","doi":"10.1016/j.comtox.2021.100205","DOIUrl":null,"url":null,"abstract":"<div><p>Toxicology in the 21st Century has seen a shift from chemical risk assessment based on traditional animal tests, identifying apical endpoints and doses that are “safe”, to the prospect of Next Generation Risk Assessment based on non-animal methods. Increasingly, large and high throughput <em>in vitro</em> datasets are being generated and exploited to develop computational models. This is accompanied by an increased use of machine learning approaches in the model building process. A potential problem, however, is that such models, while robust and predictive, may still lack credibility from the perspective of the end-user. In this commentary, we argue that the science of causal inference and reasoning, as proposed by Judea Pearl, will facilitate the development, use and acceptance of quantitative AOP models. Our hope is that by importing established concepts of causality from outside the field of toxicology, we can be “constructively disruptive” to the current toxicological paradigm, using the “Causal Revolution” to bring about a “Toxicological Revolution” more rapidly.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"21 ","pages":"Article 100205"},"PeriodicalIF":3.1000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468111321000517/pdfft?md5=537c7f476e53d6d2ea4bbf8c722bd74a&pid=1-s2.0-S2468111321000517-main.pdf","citationCount":"3","resultStr":"{\"title\":\"A matter of trust: Learning lessons about causality will make qAOPs credible\",\"authors\":\"Nicoleta Spînu , Mark T.D. Cronin , Judith C. Madden , Andrew P. Worth\",\"doi\":\"10.1016/j.comtox.2021.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Toxicology in the 21st Century has seen a shift from chemical risk assessment based on traditional animal tests, identifying apical endpoints and doses that are “safe”, to the prospect of Next Generation Risk Assessment based on non-animal methods. Increasingly, large and high throughput <em>in vitro</em> datasets are being generated and exploited to develop computational models. This is accompanied by an increased use of machine learning approaches in the model building process. A potential problem, however, is that such models, while robust and predictive, may still lack credibility from the perspective of the end-user. In this commentary, we argue that the science of causal inference and reasoning, as proposed by Judea Pearl, will facilitate the development, use and acceptance of quantitative AOP models. Our hope is that by importing established concepts of causality from outside the field of toxicology, we can be “constructively disruptive” to the current toxicological paradigm, using the “Causal Revolution” to bring about a “Toxicological Revolution” more rapidly.</p></div>\",\"PeriodicalId\":37651,\"journal\":{\"name\":\"Computational Toxicology\",\"volume\":\"21 \",\"pages\":\"Article 100205\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468111321000517/pdfft?md5=537c7f476e53d6d2ea4bbf8c722bd74a&pid=1-s2.0-S2468111321000517-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468111321000517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111321000517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
A matter of trust: Learning lessons about causality will make qAOPs credible
Toxicology in the 21st Century has seen a shift from chemical risk assessment based on traditional animal tests, identifying apical endpoints and doses that are “safe”, to the prospect of Next Generation Risk Assessment based on non-animal methods. Increasingly, large and high throughput in vitro datasets are being generated and exploited to develop computational models. This is accompanied by an increased use of machine learning approaches in the model building process. A potential problem, however, is that such models, while robust and predictive, may still lack credibility from the perspective of the end-user. In this commentary, we argue that the science of causal inference and reasoning, as proposed by Judea Pearl, will facilitate the development, use and acceptance of quantitative AOP models. Our hope is that by importing established concepts of causality from outside the field of toxicology, we can be “constructively disruptive” to the current toxicological paradigm, using the “Causal Revolution” to bring about a “Toxicological Revolution” more rapidly.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs