{"title":"设计值选择对温室冷热负荷计算的影响","authors":"S. Nam, 남 상운, Hyun-Ho Shin, 신 현호","doi":"10.12791/KSBEC.2018.27.4.277","DOIUrl":null,"url":null,"abstract":"For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the singlespan greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse. Additional key words : evapotranspiration coefficient, greenhouse design, outdoor design condition, overall heat transfer coefficient, ventilation rate","PeriodicalId":20654,"journal":{"name":"Protected horticulture and Plant Factory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Design Value Selection on Heating and Cooling Load Calculation in Greenhouses\",\"authors\":\"S. Nam, 남 상운, Hyun-Ho Shin, 신 현호\",\"doi\":\"10.12791/KSBEC.2018.27.4.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the singlespan greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse. Additional key words : evapotranspiration coefficient, greenhouse design, outdoor design condition, overall heat transfer coefficient, ventilation rate\",\"PeriodicalId\":20654,\"journal\":{\"name\":\"Protected horticulture and Plant Factory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protected horticulture and Plant Factory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12791/KSBEC.2018.27.4.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protected horticulture and Plant Factory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12791/KSBEC.2018.27.4.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Design Value Selection on Heating and Cooling Load Calculation in Greenhouses
For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the singlespan greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse. Additional key words : evapotranspiration coefficient, greenhouse design, outdoor design condition, overall heat transfer coefficient, ventilation rate