基于动态缩放矩阵的迭代原始-对偶缩放梯度算法求解时变衰落信道上的分布NUM

Yong Cheng, V. Lau
{"title":"基于动态缩放矩阵的迭代原始-对偶缩放梯度算法求解时变衰落信道上的分布NUM","authors":"Yong Cheng, V. Lau","doi":"10.1109/GLOCOM.2010.5683847","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the convergence behavior of the primal-dual scaled gradient algorithm (PDSGA) for solving distributed network utility maximization problems under time-varying fading channels. Our analysis shows that the proposed PDSGA converges to a limit region rather than a point under FSMC channels. We also show that the asymptotic tracking errors are given by $\\mathcal{O}\\left(\\overline{T}\\big/ \\overline{N}\\right)$, where $\\overline{T}$ and $\\overline{N}$ are the update interval and the average sojourn time of the FSMC, respectively. Based on these analysis, we derive a distributive solution for determining the scaling matrices based on local CSI at each node. The numerical results show the superior performance of the proposed PDSGA over several baseline schemes.","PeriodicalId":6448,"journal":{"name":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","volume":"85 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterative Primal-Dual Scaled Gradient Algorithm with Dynamic Scaling Matrices for Solving Distributive NUM over Time-Varying Fading Channels\",\"authors\":\"Yong Cheng, V. Lau\",\"doi\":\"10.1109/GLOCOM.2010.5683847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the convergence behavior of the primal-dual scaled gradient algorithm (PDSGA) for solving distributed network utility maximization problems under time-varying fading channels. Our analysis shows that the proposed PDSGA converges to a limit region rather than a point under FSMC channels. We also show that the asymptotic tracking errors are given by $\\\\mathcal{O}\\\\left(\\\\overline{T}\\\\big/ \\\\overline{N}\\\\right)$, where $\\\\overline{T}$ and $\\\\overline{N}$ are the update interval and the average sojourn time of the FSMC, respectively. Based on these analysis, we derive a distributive solution for determining the scaling matrices based on local CSI at each node. The numerical results show the superior performance of the proposed PDSGA over several baseline schemes.\",\"PeriodicalId\":6448,\"journal\":{\"name\":\"2010 IEEE Global Telecommunications Conference GLOBECOM 2010\",\"volume\":\"85 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Global Telecommunications Conference GLOBECOM 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2010.5683847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Global Telecommunications Conference GLOBECOM 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2010.5683847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了在时变衰落信道下求解分布式网络效用最大化问题的原对偶尺度梯度算法(PDSGA)的收敛性。我们的分析表明,所提出的PDSGA在FSMC信道下收敛到一个极限区域而不是一个点。我们还证明了渐近跟踪误差由$\mathcal{O}\left(\overline{T}\big/ \overline{N}\right)$给出,其中$\overline{T}$和$\overline{N}$分别是FSMC的更新间隔和平均逗留时间。在此基础上,我们推导了一种基于每个节点的局部CSI来确定缩放矩阵的分布式解决方案。数值结果表明,所提出的PDSGA比几种基准方案具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Primal-Dual Scaled Gradient Algorithm with Dynamic Scaling Matrices for Solving Distributive NUM over Time-Varying Fading Channels
In this paper, we investigate the convergence behavior of the primal-dual scaled gradient algorithm (PDSGA) for solving distributed network utility maximization problems under time-varying fading channels. Our analysis shows that the proposed PDSGA converges to a limit region rather than a point under FSMC channels. We also show that the asymptotic tracking errors are given by $\mathcal{O}\left(\overline{T}\big/ \overline{N}\right)$, where $\overline{T}$ and $\overline{N}$ are the update interval and the average sojourn time of the FSMC, respectively. Based on these analysis, we derive a distributive solution for determining the scaling matrices based on local CSI at each node. The numerical results show the superior performance of the proposed PDSGA over several baseline schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信