R. Santoso, Xupeng He, M. AlSinan, Ruben Figueroa Hernandez, H. Kwak, H. Hoteit
{"title":"油藏模拟历史匹配的多保真贝叶斯方法","authors":"R. Santoso, Xupeng He, M. AlSinan, Ruben Figueroa Hernandez, H. Kwak, H. Hoteit","doi":"10.2118/204652-ms","DOIUrl":null,"url":null,"abstract":"\n History matching is a critical step within the reservoir management process to synchronize the simulation model with the production data. The history-matched model can be used for planning optimum field development and performing optimization and uncertainty quantifications. We present a novel history matching workflow based on a Bayesian framework that accommodates subsurface uncertainties. Our workflow involves three different model resolutions within the Bayesian framework: 1) a coarse low-fidelity model to update the prior range, 2) a fine low-fidelity model to represent the high-fidelity model, and 3) a high-fidelity model to re-construct the real response. The low-fidelity model is constructed by a multivariate polynomial function, while the high-fidelity model is based on the reservoir simulation model. We firstly develop a coarse low-fidelity model using a two-level Design of Experiment (DoE), which aims to provide a better prior. We secondly use Latin Hypercube Sampling (LHS) to construct the fine low-fidelity model to be deployed in the Bayesian runs, where we use the Metropolis-Hastings algorithm. Finally, the posterior is fed into the high-fidelity model to evaluate the matching quality. This work demonstrates the importance of including uncertainties in history matching. Bayesian provides a robust framework to allow uncertainty quantification within the reservoir history matching. Under uniform prior, the convergence of the Bayesian is very sensitive to the parameter ranges. When the solution is far from the mean of the parameter ranges, the Bayesian introduces bios and deviates from the observed data. Our results show that updating the prior from the coarse low-fidelity model accelerates the Bayesian convergence and improves the matching convergence. Bayesian requires a huge number of runs to produce an accurate posterior. Running the high-fidelity model multiple times is expensive. Our workflow tackles this problem by deploying a fine low-fidelity model to represent the high-fidelity model in the main runs. This fine low-fidelity model is fast to run, while it honors the physics and accuracy of the high-fidelity model. We also use ANOVA sensitivity analysis to measure the importance of each parameter. The ranking gives awareness to the significant ones that may contribute to the matching accuracy. We demonstrate our workflow for a geothermal reservoir with static and operational uncertainties. Our workflow produces accurate matching of thermal recovery factor and produced-enthalpy rate with physically-consistent posteriors. We present a novel workflow to account for uncertainty in reservoir history matching involving multi-resolution interaction. The proposed method is generic and can be readily applied within existing history-matching workflows in reservoir simulation.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-Fidelity Bayesian Approach for History Matching in Reservoir Simulation\",\"authors\":\"R. Santoso, Xupeng He, M. AlSinan, Ruben Figueroa Hernandez, H. Kwak, H. Hoteit\",\"doi\":\"10.2118/204652-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n History matching is a critical step within the reservoir management process to synchronize the simulation model with the production data. The history-matched model can be used for planning optimum field development and performing optimization and uncertainty quantifications. We present a novel history matching workflow based on a Bayesian framework that accommodates subsurface uncertainties. Our workflow involves three different model resolutions within the Bayesian framework: 1) a coarse low-fidelity model to update the prior range, 2) a fine low-fidelity model to represent the high-fidelity model, and 3) a high-fidelity model to re-construct the real response. The low-fidelity model is constructed by a multivariate polynomial function, while the high-fidelity model is based on the reservoir simulation model. We firstly develop a coarse low-fidelity model using a two-level Design of Experiment (DoE), which aims to provide a better prior. We secondly use Latin Hypercube Sampling (LHS) to construct the fine low-fidelity model to be deployed in the Bayesian runs, where we use the Metropolis-Hastings algorithm. Finally, the posterior is fed into the high-fidelity model to evaluate the matching quality. This work demonstrates the importance of including uncertainties in history matching. Bayesian provides a robust framework to allow uncertainty quantification within the reservoir history matching. Under uniform prior, the convergence of the Bayesian is very sensitive to the parameter ranges. When the solution is far from the mean of the parameter ranges, the Bayesian introduces bios and deviates from the observed data. Our results show that updating the prior from the coarse low-fidelity model accelerates the Bayesian convergence and improves the matching convergence. Bayesian requires a huge number of runs to produce an accurate posterior. Running the high-fidelity model multiple times is expensive. Our workflow tackles this problem by deploying a fine low-fidelity model to represent the high-fidelity model in the main runs. This fine low-fidelity model is fast to run, while it honors the physics and accuracy of the high-fidelity model. We also use ANOVA sensitivity analysis to measure the importance of each parameter. The ranking gives awareness to the significant ones that may contribute to the matching accuracy. We demonstrate our workflow for a geothermal reservoir with static and operational uncertainties. Our workflow produces accurate matching of thermal recovery factor and produced-enthalpy rate with physically-consistent posteriors. We present a novel workflow to account for uncertainty in reservoir history matching involving multi-resolution interaction. The proposed method is generic and can be readily applied within existing history-matching workflows in reservoir simulation.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204652-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204652-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Fidelity Bayesian Approach for History Matching in Reservoir Simulation
History matching is a critical step within the reservoir management process to synchronize the simulation model with the production data. The history-matched model can be used for planning optimum field development and performing optimization and uncertainty quantifications. We present a novel history matching workflow based on a Bayesian framework that accommodates subsurface uncertainties. Our workflow involves three different model resolutions within the Bayesian framework: 1) a coarse low-fidelity model to update the prior range, 2) a fine low-fidelity model to represent the high-fidelity model, and 3) a high-fidelity model to re-construct the real response. The low-fidelity model is constructed by a multivariate polynomial function, while the high-fidelity model is based on the reservoir simulation model. We firstly develop a coarse low-fidelity model using a two-level Design of Experiment (DoE), which aims to provide a better prior. We secondly use Latin Hypercube Sampling (LHS) to construct the fine low-fidelity model to be deployed in the Bayesian runs, where we use the Metropolis-Hastings algorithm. Finally, the posterior is fed into the high-fidelity model to evaluate the matching quality. This work demonstrates the importance of including uncertainties in history matching. Bayesian provides a robust framework to allow uncertainty quantification within the reservoir history matching. Under uniform prior, the convergence of the Bayesian is very sensitive to the parameter ranges. When the solution is far from the mean of the parameter ranges, the Bayesian introduces bios and deviates from the observed data. Our results show that updating the prior from the coarse low-fidelity model accelerates the Bayesian convergence and improves the matching convergence. Bayesian requires a huge number of runs to produce an accurate posterior. Running the high-fidelity model multiple times is expensive. Our workflow tackles this problem by deploying a fine low-fidelity model to represent the high-fidelity model in the main runs. This fine low-fidelity model is fast to run, while it honors the physics and accuracy of the high-fidelity model. We also use ANOVA sensitivity analysis to measure the importance of each parameter. The ranking gives awareness to the significant ones that may contribute to the matching accuracy. We demonstrate our workflow for a geothermal reservoir with static and operational uncertainties. Our workflow produces accurate matching of thermal recovery factor and produced-enthalpy rate with physically-consistent posteriors. We present a novel workflow to account for uncertainty in reservoir history matching involving multi-resolution interaction. The proposed method is generic and can be readily applied within existing history-matching workflows in reservoir simulation.