基于k -均值聚类算法和RFM模型的客户细分

Gözde Aslantaş, Mustafacan Gençgül, Merve Rumelli̇, Mustafa Özsaraç, Gözde Bakirli
{"title":"基于k -均值聚类算法和RFM模型的客户细分","authors":"Gözde Aslantaş, Mustafacan Gençgül, Merve Rumelli̇, Mustafa Özsaraç, Gözde Bakirli","doi":"10.21205/deufmd.2023257418","DOIUrl":null,"url":null,"abstract":"The key points in customer segmentation are determining target customer groups and satisfying their needs. Recency-Frequency-Monetary (RFM) analysis and K-Means clustering algorithm are the popular methods for customer segmentation when analyzing customer behavior. In our study, we adapt the K-means clustering algorithm to RFM model by extracting features that represent RFM aspects of home appliances. Customers with similar RFM-oriented features are assigned to the same clusters, while customers with non-similar RFM-oriented features are assigned to different clusters. In the experiments, clustering achieved the determined threshold for Silhouette Score. The resulting clusters were ranked and named by Customer Lifetime Value (CLV) metric, which measures how valuable a customer is to the business.","PeriodicalId":23481,"journal":{"name":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Customer Segmentation Using K-Means Clustering Algorithm and RFM Model\",\"authors\":\"Gözde Aslantaş, Mustafacan Gençgül, Merve Rumelli̇, Mustafa Özsaraç, Gözde Bakirli\",\"doi\":\"10.21205/deufmd.2023257418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key points in customer segmentation are determining target customer groups and satisfying their needs. Recency-Frequency-Monetary (RFM) analysis and K-Means clustering algorithm are the popular methods for customer segmentation when analyzing customer behavior. In our study, we adapt the K-means clustering algorithm to RFM model by extracting features that represent RFM aspects of home appliances. Customers with similar RFM-oriented features are assigned to the same clusters, while customers with non-similar RFM-oriented features are assigned to different clusters. In the experiments, clustering achieved the determined threshold for Silhouette Score. The resulting clusters were ranked and named by Customer Lifetime Value (CLV) metric, which measures how valuable a customer is to the business.\",\"PeriodicalId\":23481,\"journal\":{\"name\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21205/deufmd.2023257418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2023257418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

客户细分的关键是确定目标客户群并满足他们的需求。最近-频率-货币(RFM)分析和k均值聚类算法是分析客户行为时常用的客户细分方法。在我们的研究中,我们通过提取代表家用电器RFM方面的特征,将K-means聚类算法应用于RFM模型。面向rfm特征相似的客户被分配到相同的集群,而面向rfm特征不相似的客户被分配到不同的集群。在实验中,聚类达到了确定的剪影分数阈值。结果集群根据客户生命周期价值(CLV)度量进行排序和命名,该度量度量客户对业务的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Customer Segmentation Using K-Means Clustering Algorithm and RFM Model
The key points in customer segmentation are determining target customer groups and satisfying their needs. Recency-Frequency-Monetary (RFM) analysis and K-Means clustering algorithm are the popular methods for customer segmentation when analyzing customer behavior. In our study, we adapt the K-means clustering algorithm to RFM model by extracting features that represent RFM aspects of home appliances. Customers with similar RFM-oriented features are assigned to the same clusters, while customers with non-similar RFM-oriented features are assigned to different clusters. In the experiments, clustering achieved the determined threshold for Silhouette Score. The resulting clusters were ranked and named by Customer Lifetime Value (CLV) metric, which measures how valuable a customer is to the business.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信