{"title":"利用高柔性SbSn@NC纳米纤维作为钠离子电池的无粘结阳极","authors":"Jiaojiao Liang, Gengkun Fang, Xinmiao Niu, Zhi Zhang, Yufei Wang, Lingyuan Liao, Xiaoming Zheng, Di Huang, Yuehua Wei","doi":"10.3390/surfaces6030016","DOIUrl":null,"url":null,"abstract":"Flexible and binderless electrodes have become a promising candidate for the next generation of flexible power storage devices. However, developing high-performance electrode materials with high energy density and a long cycle life remains a serious challenge for sodium-ion batteries (SIBs). The main issue is the large volume change in electrode materials during the cycling processes, leading to rapid capacity decay for SIBs. In this study, flexible electrodes for a SnSb alloy–carbon nanofiber (SnSb@NC) membrane were successfully synthesized with the aid of hydrothermal, electrospinning and annealing processes. The as-prepared binderless SnSb@NC flexible anodes were investigated for the storage properties of SIBs at 500 °C, 600 °C and 700 °C (SnSb@NC-500, SnSb@NC-600 and SnSb@NC-700), respectively. And the flexible SnSb@NC-700 electrode displayed the preferable SIB performances, achieving 240 mAh/g after 100 cycles at 0.1 A g−1. In degree-dependent I-V curve measurements, the SnSb@NC-700 membrane exhibited almost the same current at different bending degrees of 0°, 45°, 90°, 120° and 175°, indicating the outstanding mechanical properties of the flexible binderless electrodes.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Highly Flexible SbSn@NC Nanofibers as Binderless Anodes for Sodium-Ion Batteries\",\"authors\":\"Jiaojiao Liang, Gengkun Fang, Xinmiao Niu, Zhi Zhang, Yufei Wang, Lingyuan Liao, Xiaoming Zheng, Di Huang, Yuehua Wei\",\"doi\":\"10.3390/surfaces6030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible and binderless electrodes have become a promising candidate for the next generation of flexible power storage devices. However, developing high-performance electrode materials with high energy density and a long cycle life remains a serious challenge for sodium-ion batteries (SIBs). The main issue is the large volume change in electrode materials during the cycling processes, leading to rapid capacity decay for SIBs. In this study, flexible electrodes for a SnSb alloy–carbon nanofiber (SnSb@NC) membrane were successfully synthesized with the aid of hydrothermal, electrospinning and annealing processes. The as-prepared binderless SnSb@NC flexible anodes were investigated for the storage properties of SIBs at 500 °C, 600 °C and 700 °C (SnSb@NC-500, SnSb@NC-600 and SnSb@NC-700), respectively. And the flexible SnSb@NC-700 electrode displayed the preferable SIB performances, achieving 240 mAh/g after 100 cycles at 0.1 A g−1. In degree-dependent I-V curve measurements, the SnSb@NC-700 membrane exhibited almost the same current at different bending degrees of 0°, 45°, 90°, 120° and 175°, indicating the outstanding mechanical properties of the flexible binderless electrodes.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces6030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces6030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
柔性和无粘结电极已成为下一代柔性电力存储设备的有前途的候选者。然而,开发具有高能量密度和长循环寿命的高性能电极材料仍然是钠离子电池(sib)面临的严峻挑战。主要问题是在循环过程中电极材料的体积变化很大,导致sib的容量快速衰减。本研究通过水热法、静电纺丝法和退火法成功地合成了SnSb合金-碳纳米纤维(SnSb@NC)薄膜的柔性电极。研究了制备的无粘结剂SnSb@NC柔性阳极在500°C、600°C和700°C (SnSb@NC-500、SnSb@NC-600和SnSb@NC-700)下SIBs的存储性能。在0.1 A g−1下循环100次后,柔性SnSb@NC-700电极显示出较好的SIB性能,达到240 mAh/g。在不同弯曲度(0°、45°、90°、120°和175°)的I-V曲线测量中,SnSb@NC-700膜在不同弯曲度(0°、45°、90°、120°和175°)下表现出几乎相同的电流,表明柔性无粘结剂电极具有优异的力学性能。
Using Highly Flexible SbSn@NC Nanofibers as Binderless Anodes for Sodium-Ion Batteries
Flexible and binderless electrodes have become a promising candidate for the next generation of flexible power storage devices. However, developing high-performance electrode materials with high energy density and a long cycle life remains a serious challenge for sodium-ion batteries (SIBs). The main issue is the large volume change in electrode materials during the cycling processes, leading to rapid capacity decay for SIBs. In this study, flexible electrodes for a SnSb alloy–carbon nanofiber (SnSb@NC) membrane were successfully synthesized with the aid of hydrothermal, electrospinning and annealing processes. The as-prepared binderless SnSb@NC flexible anodes were investigated for the storage properties of SIBs at 500 °C, 600 °C and 700 °C (SnSb@NC-500, SnSb@NC-600 and SnSb@NC-700), respectively. And the flexible SnSb@NC-700 electrode displayed the preferable SIB performances, achieving 240 mAh/g after 100 cycles at 0.1 A g−1. In degree-dependent I-V curve measurements, the SnSb@NC-700 membrane exhibited almost the same current at different bending degrees of 0°, 45°, 90°, 120° and 175°, indicating the outstanding mechanical properties of the flexible binderless electrodes.