在仪表化数据中心实现节能无功热管理

I. Rodero, Eun Kyung Lee, D. Pompili, M. Parashar, Marc Gamell, R. Figueiredo
{"title":"在仪表化数据中心实现节能无功热管理","authors":"I. Rodero, Eun Kyung Lee, D. Pompili, M. Parashar, Marc Gamell, R. Figueiredo","doi":"10.1109/GRID.2010.5698002","DOIUrl":null,"url":null,"abstract":"Virtual Machine (VM) migration is one of the most common techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing the load and, therefore, decreasing the server utilization. However, there are other techniques such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because no single technique is the most efficient to meet temperature/performance optimization goals in all situations, we work towards an autonomic approach that performs energy-efficient thermal management while ensuring the Quality of Service (QoS) delivered to the users. In this paper, we explore ways to take actions to reduce energy consumption at the server side before performing costly migrations of VMs. Specifically, we focus on exploiting VM Monitor (VMM) configurations, such as pinning techniques in Xen platforms, which are complementary to other techniques at the physical server layer such as using low power modes. To support the arguments of our approach, we present the results obtained from an experimental evaluation on real hardware using High Performance Computing (HPC) workloads on different scenarios.","PeriodicalId":6372,"journal":{"name":"2010 11th IEEE/ACM International Conference on Grid Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Towards energy-efficient reactive thermal management in instrumented datacenters\",\"authors\":\"I. Rodero, Eun Kyung Lee, D. Pompili, M. Parashar, Marc Gamell, R. Figueiredo\",\"doi\":\"10.1109/GRID.2010.5698002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual Machine (VM) migration is one of the most common techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing the load and, therefore, decreasing the server utilization. However, there are other techniques such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because no single technique is the most efficient to meet temperature/performance optimization goals in all situations, we work towards an autonomic approach that performs energy-efficient thermal management while ensuring the Quality of Service (QoS) delivered to the users. In this paper, we explore ways to take actions to reduce energy consumption at the server side before performing costly migrations of VMs. Specifically, we focus on exploiting VM Monitor (VMM) configurations, such as pinning techniques in Xen platforms, which are complementary to other techniques at the physical server layer such as using low power modes. To support the arguments of our approach, we present the results obtained from an experimental evaluation on real hardware using High Performance Computing (HPC) workloads on different scenarios.\",\"PeriodicalId\":6372,\"journal\":{\"name\":\"2010 11th IEEE/ACM International Conference on Grid Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE/ACM International Conference on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2010.5698002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2010.5698002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

虚拟机(VM)迁移是用于减轻云数据中心服务器中的热异常(即热点)的最常用技术之一,通过减少负载,从而降低服务器利用率。但是,还有其他技术,例如电压缩放,也可以用于降低数据中心中服务器的温度。由于没有一种技术能够最有效地满足所有情况下的温度/性能优化目标,因此我们致力于采用一种自主的方法,在确保向用户提供服务质量(QoS)的同时,执行节能的热管理。在本文中,我们探讨了在执行代价高昂的vm迁移之前采取措施减少服务器端能耗的方法。具体地说,我们关注于利用VM Monitor (VMM)配置,例如Xen平台中的固定技术,这些技术是对物理服务器层的其他技术(例如使用低功耗模式)的补充。为了支持我们方法的论点,我们给出了在不同场景下使用高性能计算(HPC)工作负载对真实硬件进行实验评估获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards energy-efficient reactive thermal management in instrumented datacenters
Virtual Machine (VM) migration is one of the most common techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing the load and, therefore, decreasing the server utilization. However, there are other techniques such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because no single technique is the most efficient to meet temperature/performance optimization goals in all situations, we work towards an autonomic approach that performs energy-efficient thermal management while ensuring the Quality of Service (QoS) delivered to the users. In this paper, we explore ways to take actions to reduce energy consumption at the server side before performing costly migrations of VMs. Specifically, we focus on exploiting VM Monitor (VMM) configurations, such as pinning techniques in Xen platforms, which are complementary to other techniques at the physical server layer such as using low power modes. To support the arguments of our approach, we present the results obtained from an experimental evaluation on real hardware using High Performance Computing (HPC) workloads on different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信