G. Miguel, R. B. Saldanha, A. da Silva, L. Festugato, Helder Mansur Chaves, C. Mendes
{"title":"不同土壤稳定方法的生命周期评价比较:土壤改良的环境和成本方法","authors":"G. Miguel, R. B. Saldanha, A. da Silva, L. Festugato, Helder Mansur Chaves, C. Mendes","doi":"10.1680/jgrim.21.00006a","DOIUrl":null,"url":null,"abstract":"Dispersive soils became a worldwide major concern owing to its high susceptibility to erosion, which is responsible for ravines, tunnels, among others problems. Commonly, ordinary Portland cement or even hydrated lime are employed to solve the aforementioned drawbacks. Nonetheless, alternative treatments have been suggested to provide options to replace natural resources. Therefore, the present study aims to compare two distinct soil stabilization methods, namely, dispersive soil-hydrated lime and dispersive soil-ground waste glass-carbide lime through an environmental life cycle and life cycle cost approach. The proposed assessment was carried out according to life cycle inventories responsible to stabilize 1.0 m³ of the two distinct mixtures. Among the 18 impact categories evaluated in the environmental life cycle assessment, the alternative binder was less impacting than the traditional hydrated lime over the entire impact categories. Concerning to the cost approach, the traditional stabilization based on hydrated lime had an approximate total cost of US$ 12.02, whereas the alternative stabilization methodology a cost of US$ 39.58. Thereby, ground waste glass-carbide lime binder has potential to be known as an alternative environment friendly binder to soil stabilization, succeeding in both mechanical and environment performances but being unsuccessful in terms of costs until the present moment.","PeriodicalId":51705,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Ground Improvement","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Cycle Assessment Comparison of Distinct Soil Stabilizations Methods: An Environmental and Cost Approach to the Soil Improvement\",\"authors\":\"G. Miguel, R. B. Saldanha, A. da Silva, L. Festugato, Helder Mansur Chaves, C. Mendes\",\"doi\":\"10.1680/jgrim.21.00006a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dispersive soils became a worldwide major concern owing to its high susceptibility to erosion, which is responsible for ravines, tunnels, among others problems. Commonly, ordinary Portland cement or even hydrated lime are employed to solve the aforementioned drawbacks. Nonetheless, alternative treatments have been suggested to provide options to replace natural resources. Therefore, the present study aims to compare two distinct soil stabilization methods, namely, dispersive soil-hydrated lime and dispersive soil-ground waste glass-carbide lime through an environmental life cycle and life cycle cost approach. The proposed assessment was carried out according to life cycle inventories responsible to stabilize 1.0 m³ of the two distinct mixtures. Among the 18 impact categories evaluated in the environmental life cycle assessment, the alternative binder was less impacting than the traditional hydrated lime over the entire impact categories. Concerning to the cost approach, the traditional stabilization based on hydrated lime had an approximate total cost of US$ 12.02, whereas the alternative stabilization methodology a cost of US$ 39.58. Thereby, ground waste glass-carbide lime binder has potential to be known as an alternative environment friendly binder to soil stabilization, succeeding in both mechanical and environment performances but being unsuccessful in terms of costs until the present moment.\",\"PeriodicalId\":51705,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jgrim.21.00006a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Ground Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgrim.21.00006a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Life Cycle Assessment Comparison of Distinct Soil Stabilizations Methods: An Environmental and Cost Approach to the Soil Improvement
Dispersive soils became a worldwide major concern owing to its high susceptibility to erosion, which is responsible for ravines, tunnels, among others problems. Commonly, ordinary Portland cement or even hydrated lime are employed to solve the aforementioned drawbacks. Nonetheless, alternative treatments have been suggested to provide options to replace natural resources. Therefore, the present study aims to compare two distinct soil stabilization methods, namely, dispersive soil-hydrated lime and dispersive soil-ground waste glass-carbide lime through an environmental life cycle and life cycle cost approach. The proposed assessment was carried out according to life cycle inventories responsible to stabilize 1.0 m³ of the two distinct mixtures. Among the 18 impact categories evaluated in the environmental life cycle assessment, the alternative binder was less impacting than the traditional hydrated lime over the entire impact categories. Concerning to the cost approach, the traditional stabilization based on hydrated lime had an approximate total cost of US$ 12.02, whereas the alternative stabilization methodology a cost of US$ 39.58. Thereby, ground waste glass-carbide lime binder has potential to be known as an alternative environment friendly binder to soil stabilization, succeeding in both mechanical and environment performances but being unsuccessful in terms of costs until the present moment.
期刊介绍:
Ground Improvement provides a fast-track vehicle for the dissemination of news in technological developments, feasibility studies and innovative engineering applications for all aspects of ground improvement, ground reinforcement and grouting. The journal publishes high-quality, practical papers relevant to engineers, specialist contractors and academics involved in the development, design, construction, monitoring and quality control aspects of ground improvement. It covers a wide range of civil and environmental engineering applications, including analytical advances, performance evaluations, pilot and model studies, instrumented case-histories and innovative applications of existing technology.