一种改进的基于反步的中水拖网系统三维轨迹跟踪控制器

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Zhao Yan, Yunsheng Mao, Chenggang Liu
{"title":"一种改进的基于反步的中水拖网系统三维轨迹跟踪控制器","authors":"Zhao Yan, Yunsheng Mao, Chenggang Liu","doi":"10.1155/2016/1358412","DOIUrl":null,"url":null,"abstract":"An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation) controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System\",\"authors\":\"Zhao Yan, Yunsheng Mao, Chenggang Liu\",\"doi\":\"10.1155/2016/1358412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation) controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1358412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1358412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种用于中水拖网系统三维轨迹跟踪的改进反步控制方法。基于牛顿-欧拉法,建立了考虑双板水平膨胀效应的拖网系统数学模型。随后,提出了一种基于反推法的拖网系统主动路径跟踪策略。该模型的非严格反馈特性采用控制分配方法和多个并联非线性PID控制器来消除高阶状态变量。然后,利用Lyapunov稳定性理论对拖网系统进行稳定性分析,结果表明所设计的控制器在存在外界干扰的情况下仍能保持拖网系统的稳定性。为了验证所提出的控制器,与线性PID控制器进行了仿真比较。仿真结果表明,改进后的反步控制器对中水拖网系统的三维轨迹跟踪是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System
An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation) controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信