亚微米分散的铜钕固溶体取代

S. Nedilko, O. Dzyazko, T. Voitenko, M. Zelenko, I. Fesych, O. Ivanov
{"title":"亚微米分散的铜钕固溶体取代","authors":"S. Nedilko, O. Dzyazko, T. Voitenko, M. Zelenko, I. Fesych, O. Ivanov","doi":"10.17721/1728-2209.2020.1(57).3","DOIUrl":null,"url":null,"abstract":"High-temperature superconducting compounds based on rare-earth elements with a perovskite-like structure play an important role in the creation of modern functional materials with special magnetic, superconducting and electrophysical properties. The potential of high-temperature superconducting compounds is widely used in microelectronics, medicine, transport, telecommunications technology, energy and more. Increased functionality, performance and reliability are the driving force for the production, research and application of this class of inorganic functional materials. Solid solutions of the type NdBa2–xNdxCu3O7–δ, are structural analogues of HTSC cuprate YBa2Cu3Oy (Y123). The study of the substitution of Ba2+ atoms for Nd3+ is important for obtaining new promising materials with various electrophysical and magnetic properties, as well as improving the characteristics of existing substances. Compounds of the composition NdBa2-xNdxCu3O7–δ, where x = 0–0.9 were synthesized sol-gel method. The parameters of the crystallattice and the transition temperature to the superconducting state for the synthesized compounds are calculated. The dependence of the parameters and the type of symmetry of the crystallattice of systems on the degree of substitution of x is investigated. It was found that the samples, sol-gel method are single-phase. The unsubstituted sample of NdBa2-xNdxCu3O7–δ, is single-phase, has an orthorhombic syngony of o-Nd123 and a space group Pmmm. Within creasing degree of substitution x in solid solutions of NdBa2–xNdxCu3O7–δ, where x = 0–0.9, there is a transition from the orthorhombic to tetragonal phase (space symmetry group P4/mmm).","PeriodicalId":9359,"journal":{"name":"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEODYMIUM CUPRATE SOLID SOLUTION SUBSTITUTIONS OF SUBMICRON DISPERSION\",\"authors\":\"S. Nedilko, O. Dzyazko, T. Voitenko, M. Zelenko, I. Fesych, O. Ivanov\",\"doi\":\"10.17721/1728-2209.2020.1(57).3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature superconducting compounds based on rare-earth elements with a perovskite-like structure play an important role in the creation of modern functional materials with special magnetic, superconducting and electrophysical properties. The potential of high-temperature superconducting compounds is widely used in microelectronics, medicine, transport, telecommunications technology, energy and more. Increased functionality, performance and reliability are the driving force for the production, research and application of this class of inorganic functional materials. Solid solutions of the type NdBa2–xNdxCu3O7–δ, are structural analogues of HTSC cuprate YBa2Cu3Oy (Y123). The study of the substitution of Ba2+ atoms for Nd3+ is important for obtaining new promising materials with various electrophysical and magnetic properties, as well as improving the characteristics of existing substances. Compounds of the composition NdBa2-xNdxCu3O7–δ, where x = 0–0.9 were synthesized sol-gel method. The parameters of the crystallattice and the transition temperature to the superconducting state for the synthesized compounds are calculated. The dependence of the parameters and the type of symmetry of the crystallattice of systems on the degree of substitution of x is investigated. It was found that the samples, sol-gel method are single-phase. The unsubstituted sample of NdBa2-xNdxCu3O7–δ, is single-phase, has an orthorhombic syngony of o-Nd123 and a space group Pmmm. Within creasing degree of substitution x in solid solutions of NdBa2–xNdxCu3O7–δ, where x = 0–0.9, there is a transition from the orthorhombic to tetragonal phase (space symmetry group P4/mmm).\",\"PeriodicalId\":9359,\"journal\":{\"name\":\"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/1728-2209.2020.1(57).3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Taras Shevchenko National University of Kyiv. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1728-2209.2020.1(57).3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于稀土元素的高温超导化合物具有类似钙钛矿的结构,在创造具有特殊磁性、超导性和电物理性能的现代功能材料中起着重要作用。高温超导化合物的潜力被广泛应用于微电子、医药、交通、电信技术、能源等领域。功能性、性能和可靠性的提高是这类无机功能材料生产、研究和应用的动力。固溶体类型为NdBa2-xNdxCu3O7 -δ,是HTSC铜酸YBa2Cu3Oy (Y123)的结构类似物。研究Ba2+原子取代Nd3+对于获得具有各种电物理和磁性能的新材料,以及改善现有物质的特性具有重要意义。采用溶胶-凝胶法合成了x = 0-0.9的NdBa2-xNdxCu3O7 -δ化合物。计算了合成化合物的结晶参数和向超导态转变的温度。研究了系统的参数和晶体的对称类型与x的替换度的关系。结果表明,溶胶-凝胶法所得样品为单相。未被取代的NdBa2-xNdxCu3O7 -δ为单相,具有o-Nd123和空间基Pmmm的正交同形性。在NdBa2-xNdxCu3O7 -δ固溶体中,当x = 0-0.9时,在取代度增加x范围内,由正交相转变为四方相(空间对称群P4/mmm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEODYMIUM CUPRATE SOLID SOLUTION SUBSTITUTIONS OF SUBMICRON DISPERSION
High-temperature superconducting compounds based on rare-earth elements with a perovskite-like structure play an important role in the creation of modern functional materials with special magnetic, superconducting and electrophysical properties. The potential of high-temperature superconducting compounds is widely used in microelectronics, medicine, transport, telecommunications technology, energy and more. Increased functionality, performance and reliability are the driving force for the production, research and application of this class of inorganic functional materials. Solid solutions of the type NdBa2–xNdxCu3O7–δ, are structural analogues of HTSC cuprate YBa2Cu3Oy (Y123). The study of the substitution of Ba2+ atoms for Nd3+ is important for obtaining new promising materials with various electrophysical and magnetic properties, as well as improving the characteristics of existing substances. Compounds of the composition NdBa2-xNdxCu3O7–δ, where x = 0–0.9 were synthesized sol-gel method. The parameters of the crystallattice and the transition temperature to the superconducting state for the synthesized compounds are calculated. The dependence of the parameters and the type of symmetry of the crystallattice of systems on the degree of substitution of x is investigated. It was found that the samples, sol-gel method are single-phase. The unsubstituted sample of NdBa2-xNdxCu3O7–δ, is single-phase, has an orthorhombic syngony of o-Nd123 and a space group Pmmm. Within creasing degree of substitution x in solid solutions of NdBa2–xNdxCu3O7–δ, where x = 0–0.9, there is a transition from the orthorhombic to tetragonal phase (space symmetry group P4/mmm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信