{"title":"哈密顿记忆:一种可擦除的经典位","authors":"Roi Holtzman, Geva Arwas, O. Raz","doi":"10.1103/PHYSREVRESEARCH.3.013232","DOIUrl":null,"url":null,"abstract":"Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hamiltonian memory: An erasable classical bit\",\"authors\":\"Roi Holtzman, Geva Arwas, O. Raz\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.013232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\\\\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.013232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.