哈密顿记忆:一种可擦除的经典位

Roi Holtzman, Geva Arwas, O. Raz
{"title":"哈密顿记忆:一种可擦除的经典位","authors":"Roi Holtzman, Geva Arwas, O. Raz","doi":"10.1103/PHYSREVRESEARCH.3.013232","DOIUrl":null,"url":null,"abstract":"Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hamiltonian memory: An erasable classical bit\",\"authors\":\"Roi Holtzman, Geva Arwas, O. Raz\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.013232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\\\\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.013232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在物理系统上实现的计算基本上受到物理定律的限制。约束计算的物理定律的一个突出例子是兰道尔原理。根据这一原理,抹去一点信息需要在相空间中集中概率,根据刘维尔定理,这在纯哈密顿动力学中是不可能的。因此,它需要耗散动力学,每擦除一个比特的散热至少为$k_BT\log 2$。通过一个具体的例子,我们证明了当动力学被限制在一个单一的能量壳层时,可以使用哈密顿动力学将概率集中在这个壳层上,从而实现一个不需要热力学代价的可擦除位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian memory: An erasable classical bit
Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信