poincar_3 - zhukovskii方程的偏线性积分(一般情况)

Q3 Mathematics
V. Yu. Ol'shanskii
{"title":"poincar_3 - zhukovskii方程的偏线性积分(一般情况)","authors":"V. Yu. Ol'shanskii","doi":"10.1016/j.jappmathmech.2017.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>The existence conditions for a linear invariant relation of the Poincaré–Zhukovskii equations in the general case when the matrix of the cross terms of the Hamiltonian<span><span> can be asymmetric are obtained. A new scalar form of the equations is indicated, and they are reduced to the </span>Riccati equation in the case of motion with a linear invariant relation. A particular solution of the Riccati equation, which defines a three-parameter family of periodic solutions of the Poincaré–Zhukovskii equations, is presented. A four-parameter family of solutions of the Poincaré–Zhukovskii equations, each of which exponentially rapidly approaches a corresponding periodic solution with time, is constructed. The conditions for precessional motion with a linear invariant relation are found.</span></p></div>","PeriodicalId":49686,"journal":{"name":"Pmm Journal of Applied Mathematics and Mechanics","volume":"81 4","pages":"Pages 270-285"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.12.004","citationCount":"5","resultStr":"{\"title\":\"Partial linear integrals of the Poincaré–Zhukovskii equations (the general case)\",\"authors\":\"V. Yu. Ol'shanskii\",\"doi\":\"10.1016/j.jappmathmech.2017.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existence conditions for a linear invariant relation of the Poincaré–Zhukovskii equations in the general case when the matrix of the cross terms of the Hamiltonian<span><span> can be asymmetric are obtained. A new scalar form of the equations is indicated, and they are reduced to the </span>Riccati equation in the case of motion with a linear invariant relation. A particular solution of the Riccati equation, which defines a three-parameter family of periodic solutions of the Poincaré–Zhukovskii equations, is presented. A four-parameter family of solutions of the Poincaré–Zhukovskii equations, each of which exponentially rapidly approaches a corresponding periodic solution with time, is constructed. The conditions for precessional motion with a linear invariant relation are found.</span></p></div>\",\"PeriodicalId\":49686,\"journal\":{\"name\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"volume\":\"81 4\",\"pages\":\"Pages 270-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.12.004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021892817301065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pmm Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021892817301065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

在一般情况下,当哈密顿量的交叉项矩阵可以是非对称时,得到了poincar - zhukovskii方程线性不变关系的存在条件。给出了方程的新的标量形式,并在具有线性不变关系的运动情况下将其化为Riccati方程。给出了Riccati方程的一个特解,它定义了庞加莱-朱可夫斯基方程的三参数周期解族。构造了poincar - zhukovskii方程的四参数解族,其中每一个解都随时间指数快速逼近一个相应的周期解。得到了具有线性不变关系的岁差运动的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial linear integrals of the Poincaré–Zhukovskii equations (the general case)

The existence conditions for a linear invariant relation of the Poincaré–Zhukovskii equations in the general case when the matrix of the cross terms of the Hamiltonian can be asymmetric are obtained. A new scalar form of the equations is indicated, and they are reduced to the Riccati equation in the case of motion with a linear invariant relation. A particular solution of the Riccati equation, which defines a three-parameter family of periodic solutions of the Poincaré–Zhukovskii equations, is presented. A four-parameter family of solutions of the Poincaré–Zhukovskii equations, each of which exponentially rapidly approaches a corresponding periodic solution with time, is constructed. The conditions for precessional motion with a linear invariant relation are found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal is a cover to cover translation of the Russian journal Prikladnaya Matematika i Mekhanika, published by the Russian Academy of Sciences and reflecting all the major achievements of the Russian School of Mechanics.The journal is concerned with high-level mathematical investigations of modern physical and mechanical problems and reports current progress in this field. Special emphasis is placed on aeronautics and space science and such subjects as continuum mechanics, theory of elasticity, and mathematics of space flight guidance and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信