使用迁移学习的CNN架构检测帕金森病

Nusrat Jahan, Arifatun Nesa, Md. Abu Layek
{"title":"使用迁移学习的CNN架构检测帕金森病","authors":"Nusrat Jahan, Arifatun Nesa, Md. Abu Layek","doi":"10.1109/ICSES52305.2021.9633872","DOIUrl":null,"url":null,"abstract":"Nowadays the most common and incurable neurological disorder disease is Parkinson's disease (PD). This incurable disease is growing terribly. This study determines PD patients on the basis of fine motor symptoms using sketching. We proposed a system where we use spiral and wave sketching that can identify either the sketch is from a PD patient or not. Our experiment was done on a dataset consisting PD patient and Healthy (without PD) control group. We applied a deep learning approach Convolutional Neural Network (CNN) to determine PD infected patients and healthy (without PD) control group. We experimented on two CNN models - Inception v3 and ResNet50, with transfer learning method. The proposed system achieved 96.67% accuracy on the Inception-v3 model with spiral sketching.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"68 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parkinson's Disease Detection Using CNN Architectures withTransfer Learning\",\"authors\":\"Nusrat Jahan, Arifatun Nesa, Md. Abu Layek\",\"doi\":\"10.1109/ICSES52305.2021.9633872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the most common and incurable neurological disorder disease is Parkinson's disease (PD). This incurable disease is growing terribly. This study determines PD patients on the basis of fine motor symptoms using sketching. We proposed a system where we use spiral and wave sketching that can identify either the sketch is from a PD patient or not. Our experiment was done on a dataset consisting PD patient and Healthy (without PD) control group. We applied a deep learning approach Convolutional Neural Network (CNN) to determine PD infected patients and healthy (without PD) control group. We experimented on two CNN models - Inception v3 and ResNet50, with transfer learning method. The proposed system achieved 96.67% accuracy on the Inception-v3 model with spiral sketching.\",\"PeriodicalId\":6777,\"journal\":{\"name\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"volume\":\"68 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSES52305.2021.9633872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前最常见且无法治愈的神经系统疾病是帕金森病。这种不治之症愈演愈烈。本研究以精细运动症状为基础,用素描法确定PD患者。我们提出了一个系统,我们使用螺旋和波浪素描,可以识别素描是否来自PD患者。我们的实验是在一个由PD患者和健康(非PD)对照组组成的数据集上进行的。我们应用深度学习方法卷积神经网络(CNN)来确定PD感染患者和健康(非PD)对照组。我们用迁移学习方法在两个CNN模型——Inception v3和ResNet50上进行了实验。该系统在初始-v3模型上采用螺旋素描,准确率达到96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parkinson's Disease Detection Using CNN Architectures withTransfer Learning
Nowadays the most common and incurable neurological disorder disease is Parkinson's disease (PD). This incurable disease is growing terribly. This study determines PD patients on the basis of fine motor symptoms using sketching. We proposed a system where we use spiral and wave sketching that can identify either the sketch is from a PD patient or not. Our experiment was done on a dataset consisting PD patient and Healthy (without PD) control group. We applied a deep learning approach Convolutional Neural Network (CNN) to determine PD infected patients and healthy (without PD) control group. We experimented on two CNN models - Inception v3 and ResNet50, with transfer learning method. The proposed system achieved 96.67% accuracy on the Inception-v3 model with spiral sketching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信