基于改进双流卷积递归神经网络的RGB-D目标识别算法

Q3 Engineering
Li Xun, Li Linpeng, A. Lazovik, Wang Wenjie, W. Xiaohua
{"title":"基于改进双流卷积递归神经网络的RGB-D目标识别算法","authors":"Li Xun, Li Linpeng, A. Lazovik, Wang Wenjie, W. Xiaohua","doi":"10.12086/OEE.2021.200069","DOIUrl":null,"url":null,"abstract":"An algorithm (Re-CRNN) of image processing is proposed using RGB-D object recognition, which is improved based on a double stream convolutional recursive neural network, in order to improve the accuracy of object recognition. Re-CRNN combines RGB image with depth optical information, the double stream convolutional neural network (CNN) is improved based on the idea of residual learning as follows: top-level feature fusion unit is added into the network, the representation of federation feature is learning in RGB images and depth images and the high-level features are integrated in across channels of the extracted RGB images and depth images information, after that, the probability distribution was generated by Softmax. Finally, the experiment was carried out on the standard RGB-D data set. The experimental results show that the accuracy was 94.1% using Re-CRNN algorithm for the RGB-D object recognition, which was significantly improved compared with the existing image-based object recognition methods.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RGB-D object recognition algorithm based on improved double stream convolution recursive neural network\",\"authors\":\"Li Xun, Li Linpeng, A. Lazovik, Wang Wenjie, W. Xiaohua\",\"doi\":\"10.12086/OEE.2021.200069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm (Re-CRNN) of image processing is proposed using RGB-D object recognition, which is improved based on a double stream convolutional recursive neural network, in order to improve the accuracy of object recognition. Re-CRNN combines RGB image with depth optical information, the double stream convolutional neural network (CNN) is improved based on the idea of residual learning as follows: top-level feature fusion unit is added into the network, the representation of federation feature is learning in RGB images and depth images and the high-level features are integrated in across channels of the extracted RGB images and depth images information, after that, the probability distribution was generated by Softmax. Finally, the experiment was carried out on the standard RGB-D data set. The experimental results show that the accuracy was 94.1% using Re-CRNN algorithm for the RGB-D object recognition, which was significantly improved compared with the existing image-based object recognition methods.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

为了提高目标识别的精度,提出了一种基于RGB-D目标识别的图像处理算法(Re-CRNN),该算法在双流卷积递归神经网络的基础上进行了改进。Re-CRNN将RGB图像与深度光学信息相结合,基于残差学习的思想对双流卷积神经网络(CNN)进行了如下改进:在网络中加入顶层特征融合单元,在RGB图像和深度图像中学习联邦特征的表示,在提取的RGB图像和深度图像信息的跨通道中集成高层特征,然后通过Softmax生成概率分布。最后,在标准RGB-D数据集上进行实验。实验结果表明,Re-CRNN算法用于RGB-D目标识别的准确率为94.1%,与现有的基于图像的目标识别方法相比有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGB-D object recognition algorithm based on improved double stream convolution recursive neural network
An algorithm (Re-CRNN) of image processing is proposed using RGB-D object recognition, which is improved based on a double stream convolutional recursive neural network, in order to improve the accuracy of object recognition. Re-CRNN combines RGB image with depth optical information, the double stream convolutional neural network (CNN) is improved based on the idea of residual learning as follows: top-level feature fusion unit is added into the network, the representation of federation feature is learning in RGB images and depth images and the high-level features are integrated in across channels of the extracted RGB images and depth images information, after that, the probability distribution was generated by Softmax. Finally, the experiment was carried out on the standard RGB-D data set. The experimental results show that the accuracy was 94.1% using Re-CRNN algorithm for the RGB-D object recognition, which was significantly improved compared with the existing image-based object recognition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信