{"title":"彩色眼底图像的生物学启发的显著性模型","authors":"Samrudhdhi B. Rangrej, J. Sivaswamy","doi":"10.1145/3009977.3010041","DOIUrl":null,"url":null,"abstract":"Saliency computation is widely studied in computer vision but not in medical imaging. Existing computational saliency models have been developed for general (natural) images and hence may not be suitable for medical images. This is due to the variety of imaging modalities and the requirement of the models to capture not only normal but also deviations from normal anatomy. We present a biologically inspired model for colour fundus images and illustrate it for the case of diabetic retinopathy. The proposed model uses spatially-varying morphological operations to enhance lesions locally and combines an ensemble of results, of such operations, to generate the saliency map. The model is validated against an average Human Gaze map of 15 experts and found to have 10% higher recall (at 100% precision) than four leading saliency models proposed for natural images. The F-score for match with manual lesion markings by 5 experts was 0.4 (as opposed to 0.532 for gaze map) for our model and very poor for existing models. The model's utility is shown via a novel enhancement method which employs saliency to selectively enhance the abnormal regions and this was found to boost their contrast to noise ratio by ∼ 30%.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"84 1","pages":"54:1-54:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biologically inspired saliency model for color fundus images\",\"authors\":\"Samrudhdhi B. Rangrej, J. Sivaswamy\",\"doi\":\"10.1145/3009977.3010041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency computation is widely studied in computer vision but not in medical imaging. Existing computational saliency models have been developed for general (natural) images and hence may not be suitable for medical images. This is due to the variety of imaging modalities and the requirement of the models to capture not only normal but also deviations from normal anatomy. We present a biologically inspired model for colour fundus images and illustrate it for the case of diabetic retinopathy. The proposed model uses spatially-varying morphological operations to enhance lesions locally and combines an ensemble of results, of such operations, to generate the saliency map. The model is validated against an average Human Gaze map of 15 experts and found to have 10% higher recall (at 100% precision) than four leading saliency models proposed for natural images. The F-score for match with manual lesion markings by 5 experts was 0.4 (as opposed to 0.532 for gaze map) for our model and very poor for existing models. The model's utility is shown via a novel enhancement method which employs saliency to selectively enhance the abnormal regions and this was found to boost their contrast to noise ratio by ∼ 30%.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"84 1\",\"pages\":\"54:1-54:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A biologically inspired saliency model for color fundus images
Saliency computation is widely studied in computer vision but not in medical imaging. Existing computational saliency models have been developed for general (natural) images and hence may not be suitable for medical images. This is due to the variety of imaging modalities and the requirement of the models to capture not only normal but also deviations from normal anatomy. We present a biologically inspired model for colour fundus images and illustrate it for the case of diabetic retinopathy. The proposed model uses spatially-varying morphological operations to enhance lesions locally and combines an ensemble of results, of such operations, to generate the saliency map. The model is validated against an average Human Gaze map of 15 experts and found to have 10% higher recall (at 100% precision) than four leading saliency models proposed for natural images. The F-score for match with manual lesion markings by 5 experts was 0.4 (as opposed to 0.532 for gaze map) for our model and very poor for existing models. The model's utility is shown via a novel enhancement method which employs saliency to selectively enhance the abnormal regions and this was found to boost their contrast to noise ratio by ∼ 30%.