湍流的Prandtl-Kolmogorov 1-方程模型

Kiera Kean, W. Layton, M. Schneier
{"title":"湍流的Prandtl-Kolmogorov 1-方程模型","authors":"Kiera Kean, W. Layton, M. Schneier","doi":"10.1098/rsta.2021.0054","DOIUrl":null,"url":null,"abstract":"We prove an estimate of total (viscous plus modelled turbulent) energy dissipation in general eddy viscosity models for shear flows. The ratio of the near wall average viscosity to the effective global viscosity is the key parameter in the estimate. This result is then applied to the 1-equation, URANS model of turbulence for which this ratio depends on the specification of the turbulence length scale. The model, which was derived by Prandtl in 1945, is a component of a 2-equation model derived by Kolmogorov in 1942 and is the core of many unsteady, Reynolds averaged models for prediction of turbulent flows. Let τ denote a selected time scale. Away from walls, interpreting an early suggestion of Prandtl, we set l=2k1/2τ.In the near-wall region analysis suggests replacing the traditional l=0.41d (d= wall normal distance) with l=0.41dd/L giving l=min{2k 1/2τ, 0.41ddL}.This specification of l results in a simpler model with correct near wall asymptotics. Its energy dissipation rate scales no larger than the physically correct O(U3/L), balancing energy input with energy dissipation. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Prandtl–Kolmogorov 1-equation model of turbulence\",\"authors\":\"Kiera Kean, W. Layton, M. Schneier\",\"doi\":\"10.1098/rsta.2021.0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an estimate of total (viscous plus modelled turbulent) energy dissipation in general eddy viscosity models for shear flows. The ratio of the near wall average viscosity to the effective global viscosity is the key parameter in the estimate. This result is then applied to the 1-equation, URANS model of turbulence for which this ratio depends on the specification of the turbulence length scale. The model, which was derived by Prandtl in 1945, is a component of a 2-equation model derived by Kolmogorov in 1942 and is the core of many unsteady, Reynolds averaged models for prediction of turbulent flows. Let τ denote a selected time scale. Away from walls, interpreting an early suggestion of Prandtl, we set l=2k1/2τ.In the near-wall region analysis suggests replacing the traditional l=0.41d (d= wall normal distance) with l=0.41dd/L giving l=min{2k 1/2τ, 0.41ddL}.This specification of l results in a simpler model with correct near wall asymptotics. Its energy dissipation rate scales no larger than the physically correct O(U3/L), balancing energy input with energy dissipation. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了一般涡旋黏度剪切流模型中总能量耗散(粘性加上模拟湍流)的估计。近壁平均粘度与有效总粘度之比是估算的关键参数。该结果随后应用于1方程URANS湍流模型,其中该比率取决于湍流长度尺度的规格。该模型由Prandtl于1945年推导,是Kolmogorov于1942年推导的2方程模型的一个组成部分,也是许多用于预测湍流的非定常Reynolds平均模型的核心。令τ表示选定的时间尺度。在墙之外,我们解释了普朗特尔的早期建议,设l=2k1/2τ。在近壁区分析建议用l=0.41dd/ l代替传统的l=0.41d (d=壁法向距离),得到l=min{2k 1/2τ, 0.41ddL}。l的这一说明得到了一个更简单的模型,具有正确的近壁渐近性。其能量耗散率尺度不大于物理正确的0 (U3/L),平衡了能量输入和能量耗散。本文是主题问题“物理流体动力学中的数学问题(第二部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Prandtl–Kolmogorov 1-equation model of turbulence
We prove an estimate of total (viscous plus modelled turbulent) energy dissipation in general eddy viscosity models for shear flows. The ratio of the near wall average viscosity to the effective global viscosity is the key parameter in the estimate. This result is then applied to the 1-equation, URANS model of turbulence for which this ratio depends on the specification of the turbulence length scale. The model, which was derived by Prandtl in 1945, is a component of a 2-equation model derived by Kolmogorov in 1942 and is the core of many unsteady, Reynolds averaged models for prediction of turbulent flows. Let τ denote a selected time scale. Away from walls, interpreting an early suggestion of Prandtl, we set l=2k1/2τ.In the near-wall region analysis suggests replacing the traditional l=0.41d (d= wall normal distance) with l=0.41dd/L giving l=min{2k 1/2τ, 0.41ddL}.This specification of l results in a simpler model with correct near wall asymptotics. Its energy dissipation rate scales no larger than the physically correct O(U3/L), balancing energy input with energy dissipation. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信