超功率公理和GCH

IF 0.9 1区 数学 Q1 LOGIC
G. Goldberg
{"title":"超功率公理和GCH","authors":"G. Goldberg","doi":"10.1142/s0219061321500173","DOIUrl":null,"url":null,"abstract":"The Ultrapower Axiom is an abstract combinatorial principle inspired by the fine structure of canonical inner models of large cardinal axioms. In this paper, it is established that the Ultrapower Axiom implies that the Generalized Continuum Hypothesis holds above the least supercompact cardinal.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"30 1","pages":"2150017:1-2150017:22"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Ultrapower Axiom and the GCH\",\"authors\":\"G. Goldberg\",\"doi\":\"10.1142/s0219061321500173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ultrapower Axiom is an abstract combinatorial principle inspired by the fine structure of canonical inner models of large cardinal axioms. In this paper, it is established that the Ultrapower Axiom implies that the Generalized Continuum Hypothesis holds above the least supercompact cardinal.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"30 1\",\"pages\":\"2150017:1-2150017:22\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061321500173\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061321500173","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

超功率公理是一个抽象的组合原理,灵感来自于大基本公理的规范内模型的精细结构。本文证明了超幂公理意味着广义连续统假设在最小超紧基数以上成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ultrapower Axiom and the GCH
The Ultrapower Axiom is an abstract combinatorial principle inspired by the fine structure of canonical inner models of large cardinal axioms. In this paper, it is established that the Ultrapower Axiom implies that the Generalized Continuum Hypothesis holds above the least supercompact cardinal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信