蛋白质组学中磷酸标签电泳分析的最新进展

IF 3.8 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
H. Hirano, Jun Shirakawa
{"title":"蛋白质组学中磷酸标签电泳分析的最新进展","authors":"H. Hirano, Jun Shirakawa","doi":"10.1080/14789450.2022.2052850","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction Phosphate-binding tag (Phos-tag) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is an important development capable of analyzing the phosphorylation state of proteins. Conventionally, proteins were separated via SDS-PAGE and Phos-tag SDS-PAGE that use different gels to identify phosphorylated proteins. However, it was often difficult to compare the electrophoretic mobility of the proteins in the different gels used. The recently developed Phos-tag diagonal electrophoresis has been able to solve this problem. It can indicate the SDS-PAGE and Phos-tag SDS-PAGE patterns on a single gel; therefore, phosphorylated proteins can be distinguished easily from non-phosphorylated proteins. Areas covered This review assesses the importance of Phos-tag electrophoresis, which enables the analysis of protein phosphorylation states, in the field of proteomics. Additionally, this review describes the significance and actual experimental technique of Phos-tag diagonal electrophoresis, which was recently developed to overcome the drawbacks of Phos-tag SDS-PAGE. Expert opinion Although shotgun analysis of proteins allows detecting many phosphorylation sites, it is challenging to clarify the differences in the phosphorylation states of protein molecules using this technique. Therefore, Phos-tag SDS-PAGE is frequently used to determine the phosphorylation state of proteins. This technique has become more powerful with the recent development of Phos-tag diagonal electrophoresis. Abbreviations: BIS, N,N’-methylenebis(acrylamide); CBB, Coomassie brilliant blue R250; ESI, electrospray ionization; hnRNP, heterogeneous ribonucleoprotein K; LTQ–Orbitrap, Linear trap quadrupole–Orbitrap; LC, liquid chromatography; MS, mass spectrometry; MALDI, matrix-assisted laser desorption ionization; Phos-tag, phosphate-binding tag [1,3-bis [bis (pyridine-2-ylmethyl) amino] propane-2-olate]; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TOF, time of flight; 2D-DIGE, fluorescence-labeled two-dimensional difference gel electrophoresis; 2-DE, two-dimensional gel electrophoresis","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent developments in Phos-tag electrophoresis for the analysis of phosphoproteins in proteomics\",\"authors\":\"H. Hirano, Jun Shirakawa\",\"doi\":\"10.1080/14789450.2022.2052850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Introduction Phosphate-binding tag (Phos-tag) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is an important development capable of analyzing the phosphorylation state of proteins. Conventionally, proteins were separated via SDS-PAGE and Phos-tag SDS-PAGE that use different gels to identify phosphorylated proteins. However, it was often difficult to compare the electrophoretic mobility of the proteins in the different gels used. The recently developed Phos-tag diagonal electrophoresis has been able to solve this problem. It can indicate the SDS-PAGE and Phos-tag SDS-PAGE patterns on a single gel; therefore, phosphorylated proteins can be distinguished easily from non-phosphorylated proteins. Areas covered This review assesses the importance of Phos-tag electrophoresis, which enables the analysis of protein phosphorylation states, in the field of proteomics. Additionally, this review describes the significance and actual experimental technique of Phos-tag diagonal electrophoresis, which was recently developed to overcome the drawbacks of Phos-tag SDS-PAGE. Expert opinion Although shotgun analysis of proteins allows detecting many phosphorylation sites, it is challenging to clarify the differences in the phosphorylation states of protein molecules using this technique. Therefore, Phos-tag SDS-PAGE is frequently used to determine the phosphorylation state of proteins. This technique has become more powerful with the recent development of Phos-tag diagonal electrophoresis. Abbreviations: BIS, N,N’-methylenebis(acrylamide); CBB, Coomassie brilliant blue R250; ESI, electrospray ionization; hnRNP, heterogeneous ribonucleoprotein K; LTQ–Orbitrap, Linear trap quadrupole–Orbitrap; LC, liquid chromatography; MS, mass spectrometry; MALDI, matrix-assisted laser desorption ionization; Phos-tag, phosphate-binding tag [1,3-bis [bis (pyridine-2-ylmethyl) amino] propane-2-olate]; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TOF, time of flight; 2D-DIGE, fluorescence-labeled two-dimensional difference gel electrophoresis; 2-DE, two-dimensional gel electrophoresis\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2022.2052850\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2022.2052850","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 2

摘要

磷酸盐结合标签(Phos-tag)十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)是分析蛋白质磷酸化状态的重要进展。通常,通过SDS-PAGE和Phos-tag SDS-PAGE分离蛋白质,它们使用不同的凝胶来鉴定磷酸化的蛋白质。然而,通常很难比较不同凝胶中蛋白质的电泳迁移率。近年来发展起来的phos标签对角电泳技术解决了这一问题。它可以显示单个凝胶上的SDS-PAGE和Phos-tag SDS-PAGE模式;因此,磷酸化蛋白很容易与非磷酸化蛋白区分。这篇综述评估了phos标签电泳的重要性,它可以分析蛋白质磷酸化状态,在蛋白质组学领域。此外,本文还介绍了Phos-tag对角电泳的意义和实际实验技术,该技术是为了克服Phos-tag SDS-PAGE的缺点而发展起来的。专家意见尽管鸟枪法分析蛋白质可以检测到许多磷酸化位点,但使用这种技术来阐明蛋白质分子磷酸化状态的差异是具有挑战性的。因此,经常使用Phos-tag SDS-PAGE来确定蛋白质的磷酸化状态。近年来,随着磷标签对角电泳技术的发展,该技术变得更加强大。缩写:BIS, N,N ' -亚甲基双(丙烯酰胺);CBB,考马斯亮蓝R250;ESI,电喷雾电离;hnRNP,异质核糖核蛋白K;LTQ-Orbitrap,线性阱四极- orbitrap;LC,液相色谱;质谱法;MALDI:基质辅助激光解吸电离;phos标签,磷酸盐结合标签[1,3-二[二(吡啶-2-甲基)氨基]丙烷-2-酸盐];SDS-PAGE,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳;TOF:飞行时间;2D-DIGE,荧光标记二维差异凝胶电泳;2-DE,二维凝胶电泳
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent developments in Phos-tag electrophoresis for the analysis of phosphoproteins in proteomics
ABSTRACT Introduction Phosphate-binding tag (Phos-tag) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is an important development capable of analyzing the phosphorylation state of proteins. Conventionally, proteins were separated via SDS-PAGE and Phos-tag SDS-PAGE that use different gels to identify phosphorylated proteins. However, it was often difficult to compare the electrophoretic mobility of the proteins in the different gels used. The recently developed Phos-tag diagonal electrophoresis has been able to solve this problem. It can indicate the SDS-PAGE and Phos-tag SDS-PAGE patterns on a single gel; therefore, phosphorylated proteins can be distinguished easily from non-phosphorylated proteins. Areas covered This review assesses the importance of Phos-tag electrophoresis, which enables the analysis of protein phosphorylation states, in the field of proteomics. Additionally, this review describes the significance and actual experimental technique of Phos-tag diagonal electrophoresis, which was recently developed to overcome the drawbacks of Phos-tag SDS-PAGE. Expert opinion Although shotgun analysis of proteins allows detecting many phosphorylation sites, it is challenging to clarify the differences in the phosphorylation states of protein molecules using this technique. Therefore, Phos-tag SDS-PAGE is frequently used to determine the phosphorylation state of proteins. This technique has become more powerful with the recent development of Phos-tag diagonal electrophoresis. Abbreviations: BIS, N,N’-methylenebis(acrylamide); CBB, Coomassie brilliant blue R250; ESI, electrospray ionization; hnRNP, heterogeneous ribonucleoprotein K; LTQ–Orbitrap, Linear trap quadrupole–Orbitrap; LC, liquid chromatography; MS, mass spectrometry; MALDI, matrix-assisted laser desorption ionization; Phos-tag, phosphate-binding tag [1,3-bis [bis (pyridine-2-ylmethyl) amino] propane-2-olate]; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TOF, time of flight; 2D-DIGE, fluorescence-labeled two-dimensional difference gel electrophoresis; 2-DE, two-dimensional gel electrophoresis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Review of Proteomics
Expert Review of Proteomics 生物-生化研究方法
CiteScore
7.60
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease. The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery. The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections: Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale Article highlights - an executive summary cutting to the author''s most critical points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信