单位圆上完全和不完全采样点的最光滑狄利克雷插值

Stephan Weiss, M. Macleod
{"title":"单位圆上完全和不完全采样点的最光滑狄利克雷插值","authors":"Stephan Weiss, M. Macleod","doi":"10.1109/ICASSP.2019.8683366","DOIUrl":null,"url":null,"abstract":"This paper introduces a cost function for the smoothness of a continuous periodic function, of which only some samples are given. This cost function is important e.g. when associating samples in frequency bins for problems such as analytic singular or eigenvalue decompositions. We demonstrate the utility of the cost function, and study some of its complexity and conditioning issues.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"84 1","pages":"8053-8057"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Maximally Smooth Dirichlet Interpolation from Complete and Incomplete Sample Points on the Unit Circle\",\"authors\":\"Stephan Weiss, M. Macleod\",\"doi\":\"10.1109/ICASSP.2019.8683366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a cost function for the smoothness of a continuous periodic function, of which only some samples are given. This cost function is important e.g. when associating samples in frequency bins for problems such as analytic singular or eigenvalue decompositions. We demonstrate the utility of the cost function, and study some of its complexity and conditioning issues.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"84 1\",\"pages\":\"8053-8057\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文引入了一个连续周期函数的平滑代价函数,给出了该函数的一些样本。这个代价函数是很重要的,例如,当在分析奇异或特征值分解等问题中关联频率箱中的样本时。我们展示了成本函数的效用,并研究了它的一些复杂性和条件问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximally Smooth Dirichlet Interpolation from Complete and Incomplete Sample Points on the Unit Circle
This paper introduces a cost function for the smoothness of a continuous periodic function, of which only some samples are given. This cost function is important e.g. when associating samples in frequency bins for problems such as analytic singular or eigenvalue decompositions. We demonstrate the utility of the cost function, and study some of its complexity and conditioning issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信