粘接圆柱壳组件模型的论证

Véronique Lods
{"title":"粘接圆柱壳组件模型的论证","authors":"Véronique Lods","doi":"10.1016/S0764-4442(01)01964-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two thin linearly elastic cylindrical shells, bonded to each other. The thickness of each shell is 2<em>ε</em>, <em>ε</em> being small. The adhesive material is assumed to be a linearized Saint-Venant Kirchhoff material, with Lamé constants of order <em>ε</em><sup><em>q</em></sup> with <em>q</em>&gt;0 as in [1,2]. This material then constitutes a cylindrical shell with a thickness <em>ε</em><sup><em>r</em></sup> with <em>r</em>&gt;1. The upper shell is loaded with a volumic density of order <em>ε</em><sup>2</sup>. We consider the case <em>q</em>=3+<em>r</em>. We then establish the convergence, in appropriate spaces, of the scaled displacements and scaled stress tensors when <em>ε</em> goes to zero. The limit displacement satisfies a flexural model which involve the shear and the normal stress of the adhesive part. These stresses depend on the jump of the tangential and normal displacements of the bonded shells.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 813-816"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01964-4","citationCount":"0","resultStr":"{\"title\":\"Une justification d'un modèle d'assemblages de coques cylindriques collées\",\"authors\":\"Véronique Lods\",\"doi\":\"10.1016/S0764-4442(01)01964-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two thin linearly elastic cylindrical shells, bonded to each other. The thickness of each shell is 2<em>ε</em>, <em>ε</em> being small. The adhesive material is assumed to be a linearized Saint-Venant Kirchhoff material, with Lamé constants of order <em>ε</em><sup><em>q</em></sup> with <em>q</em>&gt;0 as in [1,2]. This material then constitutes a cylindrical shell with a thickness <em>ε</em><sup><em>r</em></sup> with <em>r</em>&gt;1. The upper shell is loaded with a volumic density of order <em>ε</em><sup>2</sup>. We consider the case <em>q</em>=3+<em>r</em>. We then establish the convergence, in appropriate spaces, of the scaled displacements and scaled stress tensors when <em>ε</em> goes to zero. The limit displacement satisfies a flexural model which involve the shear and the normal stress of the adhesive part. These stresses depend on the jump of the tangential and normal displacements of the bonded shells.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 8\",\"pages\":\"Pages 813-816\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01964-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201019644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201019644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑两个薄的线弹性圆柱壳,它们彼此粘在一起。每个壳层的厚度为2ε, ε较小。假设黏附材料为线性化的Saint-Venant Kirchhoff材料,lam常数εq阶,q>0,如[1,2]所示。然后,这种材料构成一个厚度εr为r>1的圆柱壳。上壳的体积密度为ε2阶。我们考虑q=3+r的情况。然后,我们建立了在适当的空间中,当ε趋于零时,标度位移和标度应力张量的收敛性。极限位移满足粘接部分的剪应力和法向应力共同作用的弯曲模型。这些应力取决于粘接壳的切向位移和法向位移的跳跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Une justification d'un modèle d'assemblages de coques cylindriques collées

We consider two thin linearly elastic cylindrical shells, bonded to each other. The thickness of each shell is 2ε, ε being small. The adhesive material is assumed to be a linearized Saint-Venant Kirchhoff material, with Lamé constants of order εq with q>0 as in [1,2]. This material then constitutes a cylindrical shell with a thickness εr with r>1. The upper shell is loaded with a volumic density of order ε2. We consider the case q=3+r. We then establish the convergence, in appropriate spaces, of the scaled displacements and scaled stress tensors when ε goes to zero. The limit displacement satisfies a flexural model which involve the shear and the normal stress of the adhesive part. These stresses depend on the jump of the tangential and normal displacements of the bonded shells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信