{"title":"自然环境中砷的形态与吸附","authors":"K. Campbell, D. Nordstrom","doi":"10.2138/RMG.2014.79.3","DOIUrl":null,"url":null,"abstract":"Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources. Chemical speciation is fundamental to understanding mobility and toxicity. Speciation affects arsenic solubility and solid-phase associations, and thus the mobility, of arsenic in natural waters. It is also critical to designing treatment strategies, understanding human exposure routes, and even developing medical applications (e.g., as a treatment for acute promyelocytic leukemia; Antman 2001). As single- and multi-celled organisms are exposed to various forms of arsenic, they often alter its speciation to either utilize the arsenic for energy or to mitigate the detrimental effects of intracellular arsenic (detoxification). Some organisms can accumulate arsenic in cell material, which can be a concern if it accumulates in a human food product such as rice or seafood, but could be a potential remediation solution in hyper-accumulating plants (Ma et al. 2001). It is important to quantify speciation in addition to total amount of arsenic because …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"66 1","pages":"185-216"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Arsenic Speciation and Sorption in Natural Environments\",\"authors\":\"K. Campbell, D. Nordstrom\",\"doi\":\"10.2138/RMG.2014.79.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources. Chemical speciation is fundamental to understanding mobility and toxicity. Speciation affects arsenic solubility and solid-phase associations, and thus the mobility, of arsenic in natural waters. It is also critical to designing treatment strategies, understanding human exposure routes, and even developing medical applications (e.g., as a treatment for acute promyelocytic leukemia; Antman 2001). As single- and multi-celled organisms are exposed to various forms of arsenic, they often alter its speciation to either utilize the arsenic for energy or to mitigate the detrimental effects of intracellular arsenic (detoxification). Some organisms can accumulate arsenic in cell material, which can be a concern if it accumulates in a human food product such as rice or seafood, but could be a potential remediation solution in hyper-accumulating plants (Ma et al. 2001). It is important to quantify speciation in addition to total amount of arsenic because …\",\"PeriodicalId\":49624,\"journal\":{\"name\":\"Reviews in Mineralogy & Geochemistry\",\"volume\":\"66 1\",\"pages\":\"185-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy & Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/RMG.2014.79.3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/RMG.2014.79.3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Arsenic Speciation and Sorption in Natural Environments
Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources. Chemical speciation is fundamental to understanding mobility and toxicity. Speciation affects arsenic solubility and solid-phase associations, and thus the mobility, of arsenic in natural waters. It is also critical to designing treatment strategies, understanding human exposure routes, and even developing medical applications (e.g., as a treatment for acute promyelocytic leukemia; Antman 2001). As single- and multi-celled organisms are exposed to various forms of arsenic, they often alter its speciation to either utilize the arsenic for energy or to mitigate the detrimental effects of intracellular arsenic (detoxification). Some organisms can accumulate arsenic in cell material, which can be a concern if it accumulates in a human food product such as rice or seafood, but could be a potential remediation solution in hyper-accumulating plants (Ma et al. 2001). It is important to quantify speciation in addition to total amount of arsenic because …
期刊介绍:
RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.