Jialun Liu, Hironari Sugiyama, T. Nakayama, S. Miyashita
{"title":"基于磁传感器的扣式电池自动错位定位","authors":"Jialun Liu, Hironari Sugiyama, T. Nakayama, S. Miyashita","doi":"10.1109/ICRA40945.2020.9196546","DOIUrl":null,"url":null,"abstract":"A button battery accidentally ingested by a toddler or small child can cause severe damage to the stomach within a short period of time. Once a battery lands on the surface of the esophagus or stomach, it can run a current in the tissue and induce a chemical reaction resulting in injury. Following our previous work where we presented an ingestible magnetic robot for button battery retrieval, this study presents a remotely achieved novel localization method of a button battery with commonly available magnetic sensors (Hall-effect sensors). By applying a direct magnetic field to the button battery using an electromagnetic coil, the battery is magnetized, and hence it becomes able to be sensed by Hall-effect sensors. Using a trilateration method, we were able to detect the locations of an LR44 button battery and other ferromagnetic materials at variable distances. Additional four electromagnetic coils were used to autonomously navigate a magnet-containing capsule to dislocate the battery from the affected site.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"5488-5494"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic Sensor Based Topographic Localization for Automatic Dislocation of Ingested Button Battery\",\"authors\":\"Jialun Liu, Hironari Sugiyama, T. Nakayama, S. Miyashita\",\"doi\":\"10.1109/ICRA40945.2020.9196546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A button battery accidentally ingested by a toddler or small child can cause severe damage to the stomach within a short period of time. Once a battery lands on the surface of the esophagus or stomach, it can run a current in the tissue and induce a chemical reaction resulting in injury. Following our previous work where we presented an ingestible magnetic robot for button battery retrieval, this study presents a remotely achieved novel localization method of a button battery with commonly available magnetic sensors (Hall-effect sensors). By applying a direct magnetic field to the button battery using an electromagnetic coil, the battery is magnetized, and hence it becomes able to be sensed by Hall-effect sensors. Using a trilateration method, we were able to detect the locations of an LR44 button battery and other ferromagnetic materials at variable distances. Additional four electromagnetic coils were used to autonomously navigate a magnet-containing capsule to dislocate the battery from the affected site.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"39 1\",\"pages\":\"5488-5494\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic Sensor Based Topographic Localization for Automatic Dislocation of Ingested Button Battery
A button battery accidentally ingested by a toddler or small child can cause severe damage to the stomach within a short period of time. Once a battery lands on the surface of the esophagus or stomach, it can run a current in the tissue and induce a chemical reaction resulting in injury. Following our previous work where we presented an ingestible magnetic robot for button battery retrieval, this study presents a remotely achieved novel localization method of a button battery with commonly available magnetic sensors (Hall-effect sensors). By applying a direct magnetic field to the button battery using an electromagnetic coil, the battery is magnetized, and hence it becomes able to be sensed by Hall-effect sensors. Using a trilateration method, we were able to detect the locations of an LR44 button battery and other ferromagnetic materials at variable distances. Additional four electromagnetic coils were used to autonomously navigate a magnet-containing capsule to dislocate the battery from the affected site.