带对数正则奇点的膨胀

IF 2 1区 数学
G. Sankaran, F. Santos
{"title":"带对数正则奇点的膨胀","authors":"G. Sankaran, F. Santos","doi":"10.2140/gt.2021.25.2145","DOIUrl":null,"url":null,"abstract":"We show that the minimum weight of a weighted blow-up of $\\mathbf A^d$ with $\\varepsilon$-log canonical singularities is bounded by a constant depending only on $\\varepsilon $ and $d$. This was conjectured by Birkar. \nUsing the recent classification of $4$-dimensional empty simplices by Iglesias-Vali\\~no and Santos, we work out an explicit bound for blowups of $\\mathbf A^4$ with terminal singularities: the smallest weight is always at most $32$, and at most $6$ in all but finitely many cases.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blowups with log canonical singularities\",\"authors\":\"G. Sankaran, F. Santos\",\"doi\":\"10.2140/gt.2021.25.2145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the minimum weight of a weighted blow-up of $\\\\mathbf A^d$ with $\\\\varepsilon$-log canonical singularities is bounded by a constant depending only on $\\\\varepsilon $ and $d$. This was conjectured by Birkar. \\nUsing the recent classification of $4$-dimensional empty simplices by Iglesias-Vali\\\\~no and Santos, we work out an explicit bound for blowups of $\\\\mathbf A^4$ with terminal singularities: the smallest weight is always at most $32$, and at most $6$ in all but finitely many cases.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2145\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了$\mathbf a ^d$与$\varepsilon$-log正则奇点的加权爆破的最小权值由一个仅依赖于$\varepsilon$和$d$的常数所限定。这是比尔卡的推测。利用Iglesias-Vali\~no和Santos最近对$ $4维空简式的分类,我们得到了$ $ mathbf A^4$具有端点奇点的膨胀的显式界:最小的权重总是最多$32$,除了有限多的情况外,在所有情况下最多$6$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blowups with log canonical singularities
We show that the minimum weight of a weighted blow-up of $\mathbf A^d$ with $\varepsilon$-log canonical singularities is bounded by a constant depending only on $\varepsilon $ and $d$. This was conjectured by Birkar. Using the recent classification of $4$-dimensional empty simplices by Iglesias-Vali\~no and Santos, we work out an explicit bound for blowups of $\mathbf A^4$ with terminal singularities: the smallest weight is always at most $32$, and at most $6$ in all but finitely many cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信