{"title":"用二元二次形式表示的最小素数","authors":"Naser Talebizadeh Sardari","doi":"10.4171/jems/1031","DOIUrl":null,"url":null,"abstract":"Let $D 0$ is an absolute positive constant independent of $D$. More generally, let $K$ be a bounded degree number field over $\\mathbb{Q}$ with the discriminant $D_K$ and the class number $h_K.$ We conjecture that a positive proportion of the ideal classes of $K$ contain a prime ideal with a norm less than $h_K\\log(|D_K|)$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The least prime number represented by a binary quadratic form\",\"authors\":\"Naser Talebizadeh Sardari\",\"doi\":\"10.4171/jems/1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D 0$ is an absolute positive constant independent of $D$. More generally, let $K$ be a bounded degree number field over $\\\\mathbb{Q}$ with the discriminant $D_K$ and the class number $h_K.$ We conjecture that a positive proportion of the ideal classes of $K$ contain a prime ideal with a norm less than $h_K\\\\log(|D_K|)$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The least prime number represented by a binary quadratic form
Let $D 0$ is an absolute positive constant independent of $D$. More generally, let $K$ be a bounded degree number field over $\mathbb{Q}$ with the discriminant $D_K$ and the class number $h_K.$ We conjecture that a positive proportion of the ideal classes of $K$ contain a prime ideal with a norm less than $h_K\log(|D_K|)$.