O. Y. Nalivaiko, Arcady S. Turtsevich, V. Plebanovich, P. Gaiduk
{"title":"氧化硅中锗纳米晶的偏析诱导形成","authors":"O. Y. Nalivaiko, Arcady S. Turtsevich, V. Plebanovich, P. Gaiduk","doi":"10.33581/2520-2243-2022-2-70-78","DOIUrl":null,"url":null,"abstract":"The investigation of initial stage of Si1 – xGex alloy deposition and clarification of Ge nanocrystal formation mechanism has been carried out. It was found that at the initial stages of growing layers of Si1 – xGex alloys, the density of island nuclei Si1 – xGex increases by a factor of 2.5–3.4 compared to the density of polycrystalline silicon islands (from 1.07 ⋅ 1011 to 1.90 ⋅ 1011 cm–2 and from 3.1 ⋅ 1010 to 4.3 ⋅ 1010 cm–2 respectively). A decrease in the thickness of the layer corresponding to the end of the induction period and the formation of a continuous Si1 – xGex layer to 8–10 nm (for polycrystalline silicon, the thickness of a similar layer is approximately 22 nm) has been established. It is shown that the Ge nanocrystal formation is occurred by segregationist pushback of Ge atoms by the SiO2 /Si1 – xGex oxidation front and oxidation through grain boundaries during oxidation of Si1 – xGex thin layers, produced by chemical vapor deposition. The MOS structure with array of Ge nanocrystal, which has the hysteresis capacitance characteristics of 1.7–1.8 V and leakage current density from 1.5 ⋅ 10–16 to 2.2 ⋅ 10–16 A/µm2 was obtained.","PeriodicalId":17264,"journal":{"name":"Journal of the Belarusian State University. Physics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segregation-induced formation of Ge nanocrystals in silicon oxide\",\"authors\":\"O. Y. Nalivaiko, Arcady S. Turtsevich, V. Plebanovich, P. Gaiduk\",\"doi\":\"10.33581/2520-2243-2022-2-70-78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of initial stage of Si1 – xGex alloy deposition and clarification of Ge nanocrystal formation mechanism has been carried out. It was found that at the initial stages of growing layers of Si1 – xGex alloys, the density of island nuclei Si1 – xGex increases by a factor of 2.5–3.4 compared to the density of polycrystalline silicon islands (from 1.07 ⋅ 1011 to 1.90 ⋅ 1011 cm–2 and from 3.1 ⋅ 1010 to 4.3 ⋅ 1010 cm–2 respectively). A decrease in the thickness of the layer corresponding to the end of the induction period and the formation of a continuous Si1 – xGex layer to 8–10 nm (for polycrystalline silicon, the thickness of a similar layer is approximately 22 nm) has been established. It is shown that the Ge nanocrystal formation is occurred by segregationist pushback of Ge atoms by the SiO2 /Si1 – xGex oxidation front and oxidation through grain boundaries during oxidation of Si1 – xGex thin layers, produced by chemical vapor deposition. The MOS structure with array of Ge nanocrystal, which has the hysteresis capacitance characteristics of 1.7–1.8 V and leakage current density from 1.5 ⋅ 10–16 to 2.2 ⋅ 10–16 A/µm2 was obtained.\",\"PeriodicalId\":17264,\"journal\":{\"name\":\"Journal of the Belarusian State University. Physics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Belarusian State University. Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-2243-2022-2-70-78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-2243-2022-2-70-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segregation-induced formation of Ge nanocrystals in silicon oxide
The investigation of initial stage of Si1 – xGex alloy deposition and clarification of Ge nanocrystal formation mechanism has been carried out. It was found that at the initial stages of growing layers of Si1 – xGex alloys, the density of island nuclei Si1 – xGex increases by a factor of 2.5–3.4 compared to the density of polycrystalline silicon islands (from 1.07 ⋅ 1011 to 1.90 ⋅ 1011 cm–2 and from 3.1 ⋅ 1010 to 4.3 ⋅ 1010 cm–2 respectively). A decrease in the thickness of the layer corresponding to the end of the induction period and the formation of a continuous Si1 – xGex layer to 8–10 nm (for polycrystalline silicon, the thickness of a similar layer is approximately 22 nm) has been established. It is shown that the Ge nanocrystal formation is occurred by segregationist pushback of Ge atoms by the SiO2 /Si1 – xGex oxidation front and oxidation through grain boundaries during oxidation of Si1 – xGex thin layers, produced by chemical vapor deposition. The MOS structure with array of Ge nanocrystal, which has the hysteresis capacitance characteristics of 1.7–1.8 V and leakage current density from 1.5 ⋅ 10–16 to 2.2 ⋅ 10–16 A/µm2 was obtained.