F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee, Soroosh Shafieezadeh-Abadeh
{"title":"二次混合二值集:凸包特性及其应用","authors":"F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee, Soroosh Shafieezadeh-Abadeh","doi":"10.1287/opre.2020.0827","DOIUrl":null,"url":null,"abstract":"A Unifying Framework for the Convexification of Mixed-Integer Conic Binary Sets The paper “Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications,” by Fatma Kilinc-Karzan, Simge Kucukyavuz, Dabeen Lee, and Soroosh Shafieezadeh-Abadeh, develops a unifying framework for convexifying mixed-integer conic binary sets. Many applications in machine-learning and operations research give rise to integer programming models with nonlinear structures and binary variables. The paper develops general methods for generating strong valid inequalities that take into account multiple conic constraints at the same time. The authors demonstrate that their framework applies to conic quadratic programming with binary variables, fractional programming, best subset selection, distributionally robust optimization, and sparse approximation of positive semidefinite matrices.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"67 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications\",\"authors\":\"F. Kılınç-Karzan, Simge Küçükyavuz, Dabeen Lee, Soroosh Shafieezadeh-Abadeh\",\"doi\":\"10.1287/opre.2020.0827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Unifying Framework for the Convexification of Mixed-Integer Conic Binary Sets The paper “Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications,” by Fatma Kilinc-Karzan, Simge Kucukyavuz, Dabeen Lee, and Soroosh Shafieezadeh-Abadeh, develops a unifying framework for convexifying mixed-integer conic binary sets. Many applications in machine-learning and operations research give rise to integer programming models with nonlinear structures and binary variables. The paper develops general methods for generating strong valid inequalities that take into account multiple conic constraints at the same time. The authors demonstrate that their framework applies to conic quadratic programming with binary variables, fractional programming, best subset selection, distributionally robust optimization, and sparse approximation of positive semidefinite matrices.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2020.0827\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2020.0827","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications
A Unifying Framework for the Convexification of Mixed-Integer Conic Binary Sets The paper “Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications,” by Fatma Kilinc-Karzan, Simge Kucukyavuz, Dabeen Lee, and Soroosh Shafieezadeh-Abadeh, develops a unifying framework for convexifying mixed-integer conic binary sets. Many applications in machine-learning and operations research give rise to integer programming models with nonlinear structures and binary variables. The paper develops general methods for generating strong valid inequalities that take into account multiple conic constraints at the same time. The authors demonstrate that their framework applies to conic quadratic programming with binary variables, fractional programming, best subset selection, distributionally robust optimization, and sparse approximation of positive semidefinite matrices.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.