具有散点稳定子的原始仿射群的Saxl图

Melissa Lee, Tomasz Popiel
{"title":"具有散点稳定子的原始仿射群的Saxl图","authors":"Melissa Lee, Tomasz Popiel","doi":"10.1142/s0218196723500194","DOIUrl":null,"url":null,"abstract":"Let $G$ be a permutation group on a set $\\Omega$. A base for $G$ is a subset of $\\Omega$ whose pointwise stabiliser is trivial, and the base size of $G$ is the minimal cardinality of a base. If $G$ has base size $2$, then the corresponding Saxl graph $\\Sigma(G)$ has vertex set $\\Omega$ and two vertices are adjacent if they form a base for $G$. A recent conjecture of Burness and Giudici states that if $G$ is a finite primitive permutation group with base size $2$, then $\\Sigma(G)$ has the property that every two vertices have a common neighbour. We investigate this conjecture when $G$ is an affine group and a point stabiliser is an almost quasisimple group whose unique quasisimple subnormal subgroup is a covering group of a sporadic simple group. We verify the conjecture under this assumption, in all but ten cases.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"54 1","pages":"369-389"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Saxl graphs of primitive affine groups with sporadic point stabilizers\",\"authors\":\"Melissa Lee, Tomasz Popiel\",\"doi\":\"10.1142/s0218196723500194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a permutation group on a set $\\\\Omega$. A base for $G$ is a subset of $\\\\Omega$ whose pointwise stabiliser is trivial, and the base size of $G$ is the minimal cardinality of a base. If $G$ has base size $2$, then the corresponding Saxl graph $\\\\Sigma(G)$ has vertex set $\\\\Omega$ and two vertices are adjacent if they form a base for $G$. A recent conjecture of Burness and Giudici states that if $G$ is a finite primitive permutation group with base size $2$, then $\\\\Sigma(G)$ has the property that every two vertices have a common neighbour. We investigate this conjecture when $G$ is an affine group and a point stabiliser is an almost quasisimple group whose unique quasisimple subnormal subgroup is a covering group of a sporadic simple group. We verify the conjecture under this assumption, in all but ten cases.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"54 1\",\"pages\":\"369-389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$G$是集合$\Omega$上的一个置换群。$G$的基是$\Omega$的一个子集,它的点向稳定器是微不足道的,$G$的基大小是基的最小基数。如果$G$的基大小为$2$,则对应的Saxl图$\Sigma(G)$的顶点集为$\Omega$,如果它们构成$G$的基,则两个顶点相邻。Burness和Giudici最近的一个猜想指出,如果$G$是一个基大小为$2$的有限原始置换群,那么$\Sigma(G)$具有每两个顶点有一个共同邻居的性质。当$G$是仿射群,点稳定子是几乎拟简单群,其唯一拟简单次正规子群是偶发简单群的覆盖群时,我们研究了这个猜想。我们在这个假设下验证了这个猜想,除了十种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saxl graphs of primitive affine groups with sporadic point stabilizers
Let $G$ be a permutation group on a set $\Omega$. A base for $G$ is a subset of $\Omega$ whose pointwise stabiliser is trivial, and the base size of $G$ is the minimal cardinality of a base. If $G$ has base size $2$, then the corresponding Saxl graph $\Sigma(G)$ has vertex set $\Omega$ and two vertices are adjacent if they form a base for $G$. A recent conjecture of Burness and Giudici states that if $G$ is a finite primitive permutation group with base size $2$, then $\Sigma(G)$ has the property that every two vertices have a common neighbour. We investigate this conjecture when $G$ is an affine group and a point stabiliser is an almost quasisimple group whose unique quasisimple subnormal subgroup is a covering group of a sporadic simple group. We verify the conjecture under this assumption, in all but ten cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信