音乐的反复无常

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Florence Levé, G. Micchi, J. Allouche
{"title":"音乐的反复无常","authors":"Florence Levé, G. Micchi, J. Allouche","doi":"10.1080/17459737.2022.2068687","DOIUrl":null,"url":null,"abstract":"A melody is often described as a line of music that evolves through time and, therefore, it is possible to draw its 2D pitch-time representation as a series of points implicitly defining a curve. We introduce to computational musicology a descriptor of this music curve: the inconstancy, a function that gives information on the curve's smoothness as well as some of its topological properties. A mathematical analysis of the inconstancy of music is provided, followed by a lengthy application of inconstancy to musicological tasks. We compare the inconstancy of melodic lines with that of typical accompaniment patterns such as the Alberti bass; this analysis, together with the case study of W.A. Mozart's Variations on Ah! vous dirai-je, maman, suggests a significant difference in the value of the inconstancy of a music line depending on its function. The inconstancy seems to be correlated also with the compositional style: the analysis on almost 10,000 musical themes of the common practice repertoire shows that Baroque music has higher inconstancy. Finally, we also define a windowed version of the inconstancy for studying longer scores and show the insights one can gain into, for example, structural analysis and cadence detection.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inconstancy of music\",\"authors\":\"Florence Levé, G. Micchi, J. Allouche\",\"doi\":\"10.1080/17459737.2022.2068687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A melody is often described as a line of music that evolves through time and, therefore, it is possible to draw its 2D pitch-time representation as a series of points implicitly defining a curve. We introduce to computational musicology a descriptor of this music curve: the inconstancy, a function that gives information on the curve's smoothness as well as some of its topological properties. A mathematical analysis of the inconstancy of music is provided, followed by a lengthy application of inconstancy to musicological tasks. We compare the inconstancy of melodic lines with that of typical accompaniment patterns such as the Alberti bass; this analysis, together with the case study of W.A. Mozart's Variations on Ah! vous dirai-je, maman, suggests a significant difference in the value of the inconstancy of a music line depending on its function. The inconstancy seems to be correlated also with the compositional style: the analysis on almost 10,000 musical themes of the common practice repertoire shows that Baroque music has higher inconstancy. Finally, we also define a windowed version of the inconstancy for studying longer scores and show the insights one can gain into, for example, structural analysis and cadence detection.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2022.2068687\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2022.2068687","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

旋律通常被描述为一条随时间演变的音乐线,因此,可以将其2D音高时间表示为一系列隐含定义曲线的点。我们向计算音乐学介绍了这条音乐曲线的描述符:不恒定,一个给出曲线平滑信息的函数,以及它的一些拓扑特性。本文对音乐的变异性作了数学分析,然后对变异性在音乐学任务中的应用作了长篇论述。我们将旋律线的变化与典型的伴奏模式(如Alberti低音)进行比较;本文以莫扎特的《啊!“你的diai -je, maman”表明,音乐线条的不稳定性的价值取决于它的功能。这种不稳定性似乎也与作曲风格有关:对近10,000个常见练习曲目的音乐主题的分析表明,巴洛克音乐具有更高的不稳定性。最后,我们还定义了一个窗口版本的不稳定性,以研究较长的分数,并展示了人们可以获得的见解,例如结构分析和节奏检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inconstancy of music
A melody is often described as a line of music that evolves through time and, therefore, it is possible to draw its 2D pitch-time representation as a series of points implicitly defining a curve. We introduce to computational musicology a descriptor of this music curve: the inconstancy, a function that gives information on the curve's smoothness as well as some of its topological properties. A mathematical analysis of the inconstancy of music is provided, followed by a lengthy application of inconstancy to musicological tasks. We compare the inconstancy of melodic lines with that of typical accompaniment patterns such as the Alberti bass; this analysis, together with the case study of W.A. Mozart's Variations on Ah! vous dirai-je, maman, suggests a significant difference in the value of the inconstancy of a music line depending on its function. The inconstancy seems to be correlated also with the compositional style: the analysis on almost 10,000 musical themes of the common practice repertoire shows that Baroque music has higher inconstancy. Finally, we also define a windowed version of the inconstancy for studying longer scores and show the insights one can gain into, for example, structural analysis and cadence detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信