{"title":"空心中的怪物:用德布鲁因的怪物定理计算奈基编织图案","authors":"Joshua Holden","doi":"10.1080/17513472.2023.2202946","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Japanese braids known as Naiki, which are distinguished by their hollow interior, have a simple structure shared by many other fiber arts and crafts. The way in which this structure forms a cylindrical braid imposes a particular set of symmetries on the final product. This paper uses enumerative combinatorics, including de Bruijn's Monster Theorem, to count the number of two-color Naiki braids under equivalence by this natural set of symmetries. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"26 1","pages":"99 - 110"},"PeriodicalIF":0.3000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monsters in the hollow: counting Naiki braid patterns using de Bruijn's Monster theorem\",\"authors\":\"Joshua Holden\",\"doi\":\"10.1080/17513472.2023.2202946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Japanese braids known as Naiki, which are distinguished by their hollow interior, have a simple structure shared by many other fiber arts and crafts. The way in which this structure forms a cylindrical braid imposes a particular set of symmetries on the final product. This paper uses enumerative combinatorics, including de Bruijn's Monster Theorem, to count the number of two-color Naiki braids under equivalence by this natural set of symmetries. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"26 1\",\"pages\":\"99 - 110\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2023.2202946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2023.2202946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Monsters in the hollow: counting Naiki braid patterns using de Bruijn's Monster theorem
ABSTRACT The Japanese braids known as Naiki, which are distinguished by their hollow interior, have a simple structure shared by many other fiber arts and crafts. The way in which this structure forms a cylindrical braid imposes a particular set of symmetries on the final product. This paper uses enumerative combinatorics, including de Bruijn's Monster Theorem, to count the number of two-color Naiki braids under equivalence by this natural set of symmetries. GRAPHICAL ABSTRACT