{"title":"在正则格类中构造带盘平面图形次优覆盖的算法","authors":"P. Lebedev, O. Kuvshinov","doi":"10.35634/2226-3594-2023-61-05","DOIUrl":null,"url":null,"abstract":"The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"76 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices\",\"authors\":\"P. Lebedev, O. Kuvshinov\",\"doi\":\"10.35634/2226-3594-2023-61-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2023-61-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2023-61-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Algorithms for constructing suboptimal coverings of plane figures with disks in the class of regular lattices
The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.