Copulas

O. Strauch, V. Baláž
{"title":"Copulas","authors":"O. Strauch, V. Baláž","doi":"10.2478/udt-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract Two-dimensional distribution function g(x, y) defined in [0, 1]2 is called copula, if g(x, 1) = x and g(1,y)= y for every x, y. Similarly, s-dimensional copula is a distribution function g(x1,x2,...,xs) such that every k-dimensional face function g(1,…,1,xi1,1,…,1,xi2,1,…,1,xik,1,…,1) g\\left( {1, \\ldots ,1,{x_{{i_1}}},1, \\ldots ,1,{x_{{i_2}}},1, \\ldots ,1,{x_{{i_k}}},1, \\ldots ,1} \\right) is equal to xi1 xi2 ...xik for some but fixed k. In this paper we summarize and extend all known parts of copulas. In this paper we use the following abbreviations: {x} — fractional part of x; {x} — x mod 1; [x] — integer part of x; u.d. — uniform distribution; d.f. — distribution function; a.d.f. — asymptotic distribution function; u.d.p. — uniform distribution preserving; step d.f. — step distribution function; a.e. — almost everywhere; #X — cardinality of the set X.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"76 1","pages":"147 - 200"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Copulas\",\"authors\":\"O. Strauch, V. Baláž\",\"doi\":\"10.2478/udt-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Two-dimensional distribution function g(x, y) defined in [0, 1]2 is called copula, if g(x, 1) = x and g(1,y)= y for every x, y. Similarly, s-dimensional copula is a distribution function g(x1,x2,...,xs) such that every k-dimensional face function g(1,…,1,xi1,1,…,1,xi2,1,…,1,xik,1,…,1) g\\\\left( {1, \\\\ldots ,1,{x_{{i_1}}},1, \\\\ldots ,1,{x_{{i_2}}},1, \\\\ldots ,1,{x_{{i_k}}},1, \\\\ldots ,1} \\\\right) is equal to xi1 xi2 ...xik for some but fixed k. In this paper we summarize and extend all known parts of copulas. In this paper we use the following abbreviations: {x} — fractional part of x; {x} — x mod 1; [x] — integer part of x; u.d. — uniform distribution; d.f. — distribution function; a.d.f. — asymptotic distribution function; u.d.p. — uniform distribution preserving; step d.f. — step distribution function; a.e. — almost everywhere; #X — cardinality of the set X.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"76 1\",\"pages\":\"147 - 200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在[0,1]2中定义的二维分布函数g(x, y)称为copula,如果g(x, 1) = x, g(1,y)= y,对于每个x, y, s维copula是一个分布函数g(x1,x2,…,xs),使得每个k维面函数g(1,…,1,xi1,1, xi1,1,…,1,xi2,1,…,1,xik,1,…,1)g\左({1,\ldots,1,{x_{{i_1}}},1, \ldots,1,{x_{{i_2}}},1, \ldots,1,{x_{{i_k}}},1, \ldots,1,{x_{{i_2}}},1, \ldots,1,{x_{{i_k}}},1, \ldots,1},{x_{{i_k}}},1, \ldots,1},{x_{{i_k}},1, \ldots,1},{x_{i_k}},1, \ldots,1},{x_{i_k}},1}, \ldots,1},{x_{i_k}},1}, \ldots,1},{x_{i_k}},1}, \ldots,1},{x_{i_k}})等于xi1 xi2…在本文中,我们总结和推广了所有已知的copula的部分。在本文中,我们使用以下缩写:{x} - x的小数部分;{x} - x mod 1;[x] - x的整数部分;U.d .—均匀分布;d.f.—分布函数;a.d.f -渐近分布函数;保持均匀分布;Step d.f -阶跃分布函数;A.e .——几乎到处都是;#X -集合X的基数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copulas
Abstract Two-dimensional distribution function g(x, y) defined in [0, 1]2 is called copula, if g(x, 1) = x and g(1,y)= y for every x, y. Similarly, s-dimensional copula is a distribution function g(x1,x2,...,xs) such that every k-dimensional face function g(1,…,1,xi1,1,…,1,xi2,1,…,1,xik,1,…,1) g\left( {1, \ldots ,1,{x_{{i_1}}},1, \ldots ,1,{x_{{i_2}}},1, \ldots ,1,{x_{{i_k}}},1, \ldots ,1} \right) is equal to xi1 xi2 ...xik for some but fixed k. In this paper we summarize and extend all known parts of copulas. In this paper we use the following abbreviations: {x} — fractional part of x; {x} — x mod 1; [x] — integer part of x; u.d. — uniform distribution; d.f. — distribution function; a.d.f. — asymptotic distribution function; u.d.p. — uniform distribution preserving; step d.f. — step distribution function; a.e. — almost everywhere; #X — cardinality of the set X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信