基于延迟的差异化服务控制网络模型预测控制

R. Muradore, D. Quaglia, P. Fiorini
{"title":"基于延迟的差异化服务控制网络模型预测控制","authors":"R. Muradore, D. Quaglia, P. Fiorini","doi":"10.7873/DATE.2013.234","DOIUrl":null,"url":null,"abstract":"Networked control systems are a well-known sub-set of cyber-physical systems in which the plant is controlled by sending commands through a digital packet-based network. Current control networks provide advanced channel access mechanisms to guarantee low delay on a limited fraction of packets (low-delay class) while the other packets (un-protected class) experience a higher delay which increases with channel utilization. We investigate the extension of model predictive control to choose both the command value and its assignment to one of the two classes according to the predicted state of the plant and the knowledge of network condition. Experimental results show that more commands are assigned to the low-delay class when either the tracking error is high or the network condition is bad.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model predictive control over delay-based differentiated services control networks\",\"authors\":\"R. Muradore, D. Quaglia, P. Fiorini\",\"doi\":\"10.7873/DATE.2013.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networked control systems are a well-known sub-set of cyber-physical systems in which the plant is controlled by sending commands through a digital packet-based network. Current control networks provide advanced channel access mechanisms to guarantee low delay on a limited fraction of packets (low-delay class) while the other packets (un-protected class) experience a higher delay which increases with channel utilization. We investigate the extension of model predictive control to choose both the command value and its assignment to one of the two classes according to the predicted state of the plant and the knowledge of network condition. Experimental results show that more commands are assigned to the low-delay class when either the tracking error is high or the network condition is bad.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络控制系统是网络物理系统的一个众所周知的子集,其中工厂通过基于数字分组的网络发送命令来控制。当前的控制网络提供了先进的通道访问机制,以保证有限部分数据包(低延迟类)的低延迟,而其他数据包(未受保护类)则经历更高的延迟,这种延迟随着通道利用率的增加而增加。我们研究了模型预测控制的扩展,根据被预测对象的状态和网络状态的知识,选择命令值及其分配给两类中的一类。实验结果表明,在跟踪误差较大或网络条件较差的情况下,低延迟类会被分配更多的命令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictive control over delay-based differentiated services control networks
Networked control systems are a well-known sub-set of cyber-physical systems in which the plant is controlled by sending commands through a digital packet-based network. Current control networks provide advanced channel access mechanisms to guarantee low delay on a limited fraction of packets (low-delay class) while the other packets (un-protected class) experience a higher delay which increases with channel utilization. We investigate the extension of model predictive control to choose both the command value and its assignment to one of the two classes according to the predicted state of the plant and the knowledge of network condition. Experimental results show that more commands are assigned to the low-delay class when either the tracking error is high or the network condition is bad.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信