随机点集中的期望孔数的严格界限

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
M. Balko, M. Scheucher, P. Valtr
{"title":"随机点集中的期望孔数的严格界限","authors":"M. Balko, M. Scheucher, P. Valtr","doi":"10.1002/rsa.21088","DOIUrl":null,"url":null,"abstract":"For integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\\subseteq {\\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \\Omega \\left({n}^d\\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"61 1","pages":"29 - 51"},"PeriodicalIF":0.9000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tight bounds on the expected number of holes in random point sets\",\"authors\":\"M. Balko, M. Scheucher, P. Valtr\",\"doi\":\"10.1002/rsa.21088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For integers d≥2$$ d\\\\ge 2 $$ and k≥d+1$$ k\\\\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\\\\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\\\\subseteq {\\\\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\\\\ge 2 $$ and k≥d+1$$ k\\\\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \\\\Omega \\\\left({n}^d\\\\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\\\\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"61 1\",\"pages\":\"29 - 51\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21088\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

对于整数d≥2$$ d\ge 2 $$ k≥d+1$$ k\ge d+1 $$ , a k$$ k $$‐一组中的孔$$ S $$ 在一般位置上的点$$ {\mathbb{R}}^d $$ 是k吗?$$ k $$ ‐来自S的点的元组$$ S $$ 处于凸位置,使得它们的凸壳内部不包含来自S的任何点$$ S $$ . 对于一个凸体K⊥∈d$$ K\subseteq {\mathbb{R}}^d $$ 单位d的$$ d $$ 我们研究了期望数EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ k的$$ k $$ ‐一组n中的孔$$ n $$ 从K中均匀独立随机抽取的点$$ K $$ . 我们证明了EHd,kK(n)的渐近紧下界。$$ E{H}_{d,k}^K(n) $$ 通过证明,对于所有固定整数d≥2$$ d\ge 2 $$ k≥d+1$$ k\ge d+1 $$ ,数字EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ 至少是Ω(nd)$$ \Omega \left({n}^d\right) $$ . 对于一些小孔,我们甚至确定了前导常数limn→∞n−dEHd,kK(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,k}^K(n) $$ 没错。我们改进了目前已知的limn→∞n−dEHd,d+1K(n)的下界。$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ 雷茨纳和特梅斯瓦里(2019)。在平面上,我们证明了常数limn→∞n−2EH2,kK(n)$$ {\lim}_{n\to \infty }{n}^{-2}E{H}_{2,k}^K(n) $$ 与K无关$$ K $$ 对于每一个固定k≥3$$ k\ge 3 $$ 我们计算k=4时的结果$$ k=4 $$ ,改进了Fabila - Monroy、Huemer和Mitsche以及作者早期的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight bounds on the expected number of holes in random point sets
For integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\subseteq {\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \Omega \left({n}^d\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\lim}_{n\to \infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信