随机点集中的期望孔数的严格界限

Pub Date : 2021-11-24 DOI:10.1002/rsa.21088
M. Balko, M. Scheucher, P. Valtr
{"title":"随机点集中的期望孔数的严格界限","authors":"M. Balko, M. Scheucher, P. Valtr","doi":"10.1002/rsa.21088","DOIUrl":null,"url":null,"abstract":"For integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\\subseteq {\\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\\ge 2 $$ and k≥d+1$$ k\\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \\Omega \\left({n}^d\\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\\lim}_{n\\to \\infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\\lim}_{n\\to \\infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tight bounds on the expected number of holes in random point sets\",\"authors\":\"M. Balko, M. Scheucher, P. Valtr\",\"doi\":\"10.1002/rsa.21088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For integers d≥2$$ d\\\\ge 2 $$ and k≥d+1$$ k\\\\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\\\\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\\\\subseteq {\\\\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\\\\ge 2 $$ and k≥d+1$$ k\\\\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \\\\Omega \\\\left({n}^d\\\\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\\\\lim}_{n\\\\to \\\\infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\\\\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于整数d≥2$$ d\ge 2 $$ k≥d+1$$ k\ge d+1 $$ , a k$$ k $$‐一组中的孔$$ S $$ 在一般位置上的点$$ {\mathbb{R}}^d $$ 是k吗?$$ k $$ ‐来自S的点的元组$$ S $$ 处于凸位置,使得它们的凸壳内部不包含来自S的任何点$$ S $$ . 对于一个凸体K⊥∈d$$ K\subseteq {\mathbb{R}}^d $$ 单位d的$$ d $$ 我们研究了期望数EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ k的$$ k $$ ‐一组n中的孔$$ n $$ 从K中均匀独立随机抽取的点$$ K $$ . 我们证明了EHd,kK(n)的渐近紧下界。$$ E{H}_{d,k}^K(n) $$ 通过证明,对于所有固定整数d≥2$$ d\ge 2 $$ k≥d+1$$ k\ge d+1 $$ ,数字EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ 至少是Ω(nd)$$ \Omega \left({n}^d\right) $$ . 对于一些小孔,我们甚至确定了前导常数limn→∞n−dEHd,kK(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,k}^K(n) $$ 没错。我们改进了目前已知的limn→∞n−dEHd,d+1K(n)的下界。$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ 雷茨纳和特梅斯瓦里(2019)。在平面上,我们证明了常数limn→∞n−2EH2,kK(n)$$ {\lim}_{n\to \infty }{n}^{-2}E{H}_{2,k}^K(n) $$ 与K无关$$ K $$ 对于每一个固定k≥3$$ k\ge 3 $$ 我们计算k=4时的结果$$ k=4 $$ ,改进了Fabila - Monroy、Huemer和Mitsche以及作者早期的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tight bounds on the expected number of holes in random point sets
For integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , a k$$ k $$‐hole in a set S$$ S $$ of points in general position in ℝd$$ {\mathbb{R}}^d $$ is a k$$ k $$ ‐tuple of points from S$$ S $$ in convex position such that the interior of their convex hull does not contain any point from S$$ S $$ . For a convex body K⊆ℝd$$ K\subseteq {\mathbb{R}}^d $$ of unit d$$ d $$ ‐dimensional volume, we study the expected number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ of k$$ k $$ ‐holes in a set of n$$ n $$ points drawn uniformly and independently at random from K$$ K $$ . We prove an asymptotically tight lower bound on EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ by showing that, for all fixed integers d≥2$$ d\ge 2 $$ and k≥d+1$$ k\ge d+1 $$ , the number EHd,kK(n)$$ E{H}_{d,k}^K(n) $$ is at least Ω(nd)$$ \Omega \left({n}^d\right) $$ . For some small holes, we even determine the leading constant limn→∞n−dEHd,kK(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,k}^K(n) $$ exactly. We improve the currently best‐known lower bound on limn→∞n−dEHd,d+1K(n)$$ {\lim}_{n\to \infty }{n}^{-d}E{H}_{d,d+1}^K(n) $$ by Reitzner and Temesvari (2019). In the plane, we show that the constant limn→∞n−2EH2,kK(n)$$ {\lim}_{n\to \infty }{n}^{-2}E{H}_{2,k}^K(n) $$ is independent of K$$ K $$ for every fixed k≥3$$ k\ge 3 $$ and we compute it exactly for k=4$$ k=4 $$ , improving earlier estimates by Fabila‐Monroy, Huemer, and Mitsche and by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信