{"title":"基于人工神经网络的芯片级信号完整性分析与串扰预测","authors":"A. Ilumoka","doi":"10.1109/ISQED.2002.996725","DOIUrl":null,"url":null,"abstract":"Recent ITRS predictions indicate that by the year 2011, the billion transistor monolithic die will be a reality. This clearly poses a challenge to gigascale integrated circuit design with regard to provision of multilevel interconnect wiring for the distribution of power, data and control signals to all parts of a chip. This paper addresses the problem of characterization, modeling and verification of 3D chip level interconnect crosstalk. The novel methodology proposed involves topological decomposition of interconnects into standard cells and the creation of parameterized models of these primitive structures using neural networks. Experimental results from a high performance operational amplifier demonstrates the viability of the approach.","PeriodicalId":20510,"journal":{"name":"Proceedings International Symposium on Quality Electronic Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chip level signal integrity analysis and crosstalk prediction using artificial neural nets\",\"authors\":\"A. Ilumoka\",\"doi\":\"10.1109/ISQED.2002.996725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent ITRS predictions indicate that by the year 2011, the billion transistor monolithic die will be a reality. This clearly poses a challenge to gigascale integrated circuit design with regard to provision of multilevel interconnect wiring for the distribution of power, data and control signals to all parts of a chip. This paper addresses the problem of characterization, modeling and verification of 3D chip level interconnect crosstalk. The novel methodology proposed involves topological decomposition of interconnects into standard cells and the creation of parameterized models of these primitive structures using neural networks. Experimental results from a high performance operational amplifier demonstrates the viability of the approach.\",\"PeriodicalId\":20510,\"journal\":{\"name\":\"Proceedings International Symposium on Quality Electronic Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2002.996725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2002.996725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chip level signal integrity analysis and crosstalk prediction using artificial neural nets
Recent ITRS predictions indicate that by the year 2011, the billion transistor monolithic die will be a reality. This clearly poses a challenge to gigascale integrated circuit design with regard to provision of multilevel interconnect wiring for the distribution of power, data and control signals to all parts of a chip. This paper addresses the problem of characterization, modeling and verification of 3D chip level interconnect crosstalk. The novel methodology proposed involves topological decomposition of interconnects into standard cells and the creation of parameterized models of these primitive structures using neural networks. Experimental results from a high performance operational amplifier demonstrates the viability of the approach.